亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? trainlssvm.m

?? 很好的軟件包
?? M
字號:
function [model,b,X,Y]  = trainlssvm(model,X,Y) % Train the support values and the bias term of an LS-SVM for classification or function approximation% % >> [alpha, b] = trainlssvm({X,Y,type,gam,kernel_par,kernel,preprocess})% >> model      = trainlssvm(model)% % type can be 'classifier' or 'function estimation' (these strings% can be abbreviated into 'c' or 'f', respectively). X and Y are% matrices holding the training input and output data. The i-th% data point is represented by the i-th row X(i,:) and Y(i,:). gam% is the regularization parameter: for gam low minimizing of the% complexity of the model is emphasized, for gam high, good fitting% of the training data points is stressed. kernel_par is the% parameter of the kernel; in the common case of an RBF kernel, a% large sig2 indicates a stronger smoothing. The kernel_type% indicates the function that is called to compute the kernel value% (by default RBF_kernel). Other kernels can be used for example: % % >> [alpha, b] = trainlssvm({X,Y,type,gam,[d p],'poly_kernel'})% >> [alpha, b] = trainlssvm({X,Y,type,gam,[]   ,'lin_kernel'})% % The kernel parameter(s) are passed as a row vector, in the case% no kernel parameter is needed, pass the empty vector! % % The training can either be proceeded by the preprocessing% function ('preprocess') (by default) or not ('original'). The% training calls the preprocessing (prelssvm, postlssvm) and the% encoder (codelssvm) if appropiate. % % In the remainder of the text, the content of the cell determining% the LS-SVM is given by {X,Y, type, gam, sig2}. However, the% additional arguments in this cell can always be added in the% calls. % % If one uses the object oriented interface (see also A.3.14), the training is done by% % >> model = trainlssvm(model)% >> model = trainlssvm(model, X, Y)% % The status of the model checks whether a retraining is% needed. The extra arguments X, Y allow to re-initialize the model% with this new training data as long as its dimensions are the% same as the old initiation. % % Three training implementations are included:% %     * The C-implementation linked with CMEX: this implementation%     is based on the iterative solver Conjugate Gradient algorithm%     (CG) (lssvm.mex*). After this training call, a '-' is%     displayed. This is recommended for use on larger data sets. % %     * The C-implementation called via a buffer file: this is%     based on CG; check if the executable 'lssvmFILE.x' is in the%     current directory; (lssvmFILE.x). After this training call, a%     '-' is displayed. %  %     * The Matlab implementation: a straightforward implementation%     based on the matrix division '\' (lssvmMATLAB.m). After this%     training call, a '~' is  displayed. This is recommended for a%     number of training data points smaller than 500 (depending on%     the computer memory).  % % By default, the cmex implementation is called. If this one fails,% the Matlab implementation is chosen instead. One can specify% explicitly which implementation to use using the object oriented% interface. % % This implementation allows to train a multidimensional output% problem. If each output uses the same kernel type, kernel% parameters and regularization parameter, this is% straightforward. If not so, one can specify the different types% and/or parameters as a row vector in the appropriate% argument. Each dimension will be trained with the corresponding% column in this vector. % % >> [alpha, b] = trainlssvm({X, [Y_1 ... Y_d],type,...%                              [gam_1 ... gam_d], ...%                             [sig2_1 ... sig2_d],...%                           {kernel_1,...,kernel_d}})% % Full syntax% %     1. Using the functional interface:% % >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2})% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel})% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})% %       Outputs    %         alpha         : N x m matrix with support values of the LS-SVM%         b             : 1 x m vector with bias term(s) of the LS-SVM%       Inputs    %         X             : N x d matrix with the inputs of the training data%         Y             : N x 1 vector with the outputs of the training data%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'% %%     * Using the object oriented interface:% % >> model = trainlssvm(model)% >> model = trainlssvm({X,Y,type,gam,sig2})% >> model = trainlssvm({X,Y,type,gam,sig2,kernel})% >> model = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})% %       Outputs    %         model          : Trained object oriented representation of the LS-SVM model%       Inputs    %         model          : Object oriented representation of the LS-SVM model%         X(*)           : N x d matrix with the inputs of the training data%         Y(*)           : N x 1 vector with the outputs of the training data%         type(*)        : 'function estimation' ('f') or 'classifier' ('c')%         gam(*)         : Regularization parameter%         sig2(*)        : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)      : Kernel type (by default 'RBF_kernel')%         preprocess(*)  : 'preprocess'(*) or 'original'% % See also:%   simlssvm, initlssvm, changelssvm, plotlssvm, prelssvm, codelssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialise the model 'model'%if (iscell(model)),  model = initlssvm(model{:});end%% given X and Y?%%model = codelssvm(model);eval('model = changelssvm(model,''xtrain'',X);',';');eval('model = changelssvm(model,''ytrain'',Y);',';');eval('model = changelssvm(model,''selector'',1:size(X,1));',';');%% no training needed if status = 'trained'%if model.status(1) == 't',  if (nargout>1),    % [alpha,b]    X = model.xtrain;    Y = model.ytrain;    b = model.b;    model = model.alpha;  end  returnend  %% control of the inputs%if ~((strcmp(model.kernel_type,'RBF_kernel') & length(model.kernel_pars)>=1) |...     (strcmp(model.kernel_type,'lin_kernel') & length(model.kernel_pars)>=0) |...     (strcmp(model.kernel_type,'MLP_kernel') & length(model.kernel_pars)>=2) |...     (strcmp(model.kernel_type,'poly_kernel')& length(model.kernel_pars)>=1)),  eval('feval(model.kernel_type,model.xtrain(1,:),model.xtrain(2,:),model.kernel_pars);model.implementation=''MATLAB'';',...       'error(''The kernel type is not valid or to few arguments'');');elseif (model.steps<=0),  error('steps must be larger then 0');elseif (model.gam<=0),  error('gamma must be larger then 0');% elseif (model.kernel_pars<=0),%   error('sig2 must be larger then 0');elseif or(model.x_dim<=0, model.y_dim<=0),  error('dimension of datapoints must be larger than 0');end%% coding if needed%if model.code(1) == 'c', % changed  model = codelssvm(model);end%% preprocess%eval('if model.prestatus(1)==''c'', changed=1; else changed=0;end;','changed=0;');if model.preprocess(1) =='p' & changed,  model = prelssvm(model);elseif model.preprocess(1) =='o' & changed   model = postlssvm(model);end% clocktic;%% set & control input variables and dimensions% if (model.type(1) == 'f'), % function  dyn_pars=[];elseif (model.type(1) == 'c'), % class  dyn_pars=[];  end% only MATLABif size(model.gam,1)>1,   model.implementation='MATLAB'; end%% output dimension > 1...recursive call on each dimension%if model.y_dim>1,  if (length(model.kernel_pars)==model.y_dim | size(model.gam,2)==model.y_dim |prod(size(model.kernel_type,2))==model.y_dim)    disp('multidimensional output...');    model = trainmultidimoutput(model);    %    % wich output is wanted?    %    if (nargout>1),      X = model.xtrain;      Y = model.ytrain;      b = model.b;      model = model.alpha;    else           model.duration = toc;      model.status = 'trained';    end    return    endend%% call lssvmMATLAB.m, lssvm.mex* or lssvmFILE.m%if strcmpi(model.implementation,'CMEX'),  model.cga_startvalues = [];  eval('model.cga_startvalues;','model.cga_startvalues = [];');    eval(['[model.alpha, model.b,model.cga_startvalues] =' ...	'lssvm(model.xtrain(model.selector, 1:model.x_dim)'',model.x_dim,'...	'model.ytrain(model.selector, 1:model.y_dim),model.y_dim,'...	'model.nb_data, model.type, model.gam,' ...	'model.cga_eps, model.cga_fi_bound,model.cga_max_itr,' ...	'model.cga_startvalues,'...	'model.kernel_type,  model.kernel_pars,' ...	'model.cga_show,dyn_pars);'],...        'model.implementation=''CFILE''; disp(''converting now to CFILE implementation'');');% if error in CMEX ...endif strcmpi(model.implementation,'CFILE'),  eval('model.cga_startvalues;','model.cga_startvalues = [];');  eval('model = lssvmFILE(model,''buffer.mc'');',...       ['model.implementation=''MATLAB'';'...	'disp(''make sure lssvmFILE.x (lssvmFILE.exe) is in the' ...	 ' current directory, change now to MATLAB implementation...'');']);   % if error in CFILE ...endif strcmpi(model.implementation(1),'m'),  model = lssvmMATLAB(model);end%% wich output is wanted?%if (nargout>1),  X = model.xtrain;  Y = model.ytrain;  b = model.b;  model = model.alpha;else       model.duration = toc;  model.status = 'trained';end    %%function model = trainmultidimoutput(model)%% %  model.alpha = zeros(model.nb_data, model.y_dim);  model.b = zeros(1,model.y_dim);  model.cga_startvalues = [];  for d=1:model.y_dim,    eval('gam = model.gam(:,d);','gam = model.gam(:);');    eval('sig2 = model.kernel_pars(:,d);','sig2 = model.kernel_pars(:);');    eval('kernel = model.kernel_typewkacc2y;','kernel=model.kernel_type;');    [model.alpha(:,d),model.b(d)] = trainlssvm({model.xtrain,model.ytrain(:,d),model.type,gam,sig2,kernel,'original'});  end    %  % wich output is wanted?  %  if (nargout>1),    X = model.xtrain;    Y = model.ytrain;    b = model.b;    model = model.alpha;  else         model.duration = toc;    model.status = 'trained';  end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产激情精品久久久第一区二区 | 欧美探花视频资源| 国产视频911| 国内精品不卡在线| 国产拍揄自揄精品视频麻豆| 国产一区二区三区免费在线观看| 久久久一区二区| fc2成人免费人成在线观看播放| 国产精品日韩成人| 色网站国产精品| 日韩电影在线免费观看| 精品国产99国产精品| 粉嫩av一区二区三区在线播放| 国产精品国产三级国产三级人妇 | 成人a级免费电影| 日韩伦理av电影| 欧美日韩精品系列| 国产主播一区二区| 亚洲激情中文1区| 欧美一区二区三区人| 国产98色在线|日韩| 亚洲蜜臀av乱码久久精品蜜桃| 欧美日韩国产综合一区二区三区| 久久国产精品露脸对白| 国产精品免费视频观看| 欧美日韩高清一区| 粉嫩aⅴ一区二区三区四区五区| 亚洲精品五月天| 精品久久久久99| 91视频一区二区三区| 日韩精品乱码av一区二区| 欧美xxxxxxxx| 一本大道久久a久久综合| 日本三级亚洲精品| 中文在线一区二区| 91精品在线免费| 成人免费看片app下载| 无吗不卡中文字幕| 国产精品视频一二三区| 欧美日韩一区不卡| 成人蜜臀av电影| 美腿丝袜亚洲三区| 亚洲私人影院在线观看| 久久综合一区二区| 9191成人精品久久| 色天使久久综合网天天| 国产乱国产乱300精品| 日韩高清一级片| 亚洲靠逼com| 亚洲国产岛国毛片在线| 精品99一区二区三区| 欧美丝袜自拍制服另类| 91啪在线观看| proumb性欧美在线观看| 国产一区二区美女| 日本不卡的三区四区五区| 一区二区三区成人| 亚洲欧美激情一区二区| 欧美国产精品一区| 亚洲精品在线免费观看视频| 欧美肥妇bbw| 欧美日韩亚洲国产综合| 91免费小视频| 91一区二区在线| 不卡的看片网站| av电影天堂一区二区在线| 国产一区二区免费视频| 美腿丝袜亚洲一区| 美腿丝袜亚洲色图| 麻豆91小视频| 裸体健美xxxx欧美裸体表演| 五月天视频一区| 日本在线不卡一区| 日韩和欧美一区二区三区| 午夜久久久久久| 亚洲国产欧美另类丝袜| 亚洲国产成人精品视频| 亚洲mv在线观看| 无码av免费一区二区三区试看| 亚洲电影你懂得| 午夜av一区二区三区| 日本不卡不码高清免费观看| 奇米影视在线99精品| 久久97超碰色| 国产成人精品免费视频网站| 国产成人av一区二区| 成人午夜私人影院| 91网页版在线| 欧美网站大全在线观看| 5566中文字幕一区二区电影| 日韩精品一区二区三区视频播放| 精品奇米国产一区二区三区| 精品国产免费久久| 国产欧美精品一区| 亚洲欧美一区二区久久 | 国产日韩欧美精品综合| 国产欧美精品一区二区色综合| 国产精品丝袜91| 一二三四社区欧美黄| 日韩在线卡一卡二| 国产精品系列在线播放| 色欧美88888久久久久久影院| 欧美美女bb生活片| 国产清纯白嫩初高生在线观看91| 亚洲精品伦理在线| 美女mm1313爽爽久久久蜜臀| 国产福利一区二区| 91黄视频在线观看| 日韩欧美久久久| 136国产福利精品导航| 午夜精品福利在线| 成人综合日日夜夜| 欧美日本在线视频| 国产三级一区二区| 亚洲影院免费观看| 国内精品自线一区二区三区视频| 成人午夜电影网站| 欧美美女黄视频| 国产精品少妇自拍| 美女视频一区二区三区| 99久久婷婷国产综合精品| 日韩亚洲欧美一区二区三区| 国产精品国产三级国产有无不卡 | aaa亚洲精品| 欧美精品v日韩精品v韩国精品v| 26uuu精品一区二区| 亚洲在线中文字幕| 成人a区在线观看| 日韩精品一区二| 性欧美疯狂xxxxbbbb| 丁香婷婷综合激情五月色| 宅男噜噜噜66一区二区66| 最新不卡av在线| 国产美女在线精品| 欧美卡1卡2卡| 亚洲免费av在线| 成人18视频日本| 精品美女在线观看| 亚洲福利视频一区二区| 99精品视频在线观看| 久久久久国产成人精品亚洲午夜| 午夜免费久久看| 色婷婷久久99综合精品jk白丝 | 中文av字幕一区| 精品午夜久久福利影院| 欧美日韩国产一二三| 亚洲黄色小说网站| 成人动漫一区二区在线| 久久综合九色综合欧美就去吻| 亚洲成av人片一区二区梦乃| 91丝袜美腿高跟国产极品老师| 中文字幕乱码一区二区免费| 美国十次综合导航| 日韩欧美在线综合网| 亚洲aⅴ怡春院| 欧美日韩高清影院| 午夜精品一区二区三区电影天堂| 一本大道综合伊人精品热热| 国产精品久久久久久户外露出| 韩国成人精品a∨在线观看| 精品少妇一区二区三区 | 狠狠色丁香婷综合久久| 欧美精品一卡两卡| 污片在线观看一区二区| 欧美三级在线播放| 亚洲国产综合色| 在线亚洲精品福利网址导航| 亚洲精品精品亚洲| 在线免费亚洲电影| 亚洲一区欧美一区| 欧美日韩国产一二三| 天天操天天色综合| 欧美成人精品二区三区99精品| 久久成人免费网| 久久蜜桃av一区精品变态类天堂 | 国产乱理伦片在线观看夜一区| 精品国产乱码久久久久久浪潮| 老司机精品视频在线| 欧美zozo另类异族| 国产成人免费在线观看| 一区在线观看免费| 欧美午夜免费电影| 日韩av一区二| 亚洲精品在线免费观看视频| 国产成人小视频| 亚洲精品国产一区二区精华液| 91久久精品一区二区| 天天影视色香欲综合网老头| 日韩一区二区三区观看| 国产精品99久久久久久似苏梦涵 | 青青国产91久久久久久| 久久综合av免费| jizzjizzjizz欧美| 亚洲成a人片在线不卡一二三区| 欧美一激情一区二区三区| 激情六月婷婷综合| 亚洲欧美激情插| 91精品久久久久久蜜臀| 国产传媒日韩欧美成人| 亚洲女女做受ⅹxx高潮|