亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? trainlssvm.m

?? 很好的軟件包
?? M
字號(hào):
function [model,b,X,Y]  = trainlssvm(model,X,Y) % Train the support values and the bias term of an LS-SVM for classification or function approximation% % >> [alpha, b] = trainlssvm({X,Y,type,gam,kernel_par,kernel,preprocess})% >> model      = trainlssvm(model)% % type can be 'classifier' or 'function estimation' (these strings% can be abbreviated into 'c' or 'f', respectively). X and Y are% matrices holding the training input and output data. The i-th% data point is represented by the i-th row X(i,:) and Y(i,:). gam% is the regularization parameter: for gam low minimizing of the% complexity of the model is emphasized, for gam high, good fitting% of the training data points is stressed. kernel_par is the% parameter of the kernel; in the common case of an RBF kernel, a% large sig2 indicates a stronger smoothing. The kernel_type% indicates the function that is called to compute the kernel value% (by default RBF_kernel). Other kernels can be used for example: % % >> [alpha, b] = trainlssvm({X,Y,type,gam,[d p],'poly_kernel'})% >> [alpha, b] = trainlssvm({X,Y,type,gam,[]   ,'lin_kernel'})% % The kernel parameter(s) are passed as a row vector, in the case% no kernel parameter is needed, pass the empty vector! % % The training can either be proceeded by the preprocessing% function ('preprocess') (by default) or not ('original'). The% training calls the preprocessing (prelssvm, postlssvm) and the% encoder (codelssvm) if appropiate. % % In the remainder of the text, the content of the cell determining% the LS-SVM is given by {X,Y, type, gam, sig2}. However, the% additional arguments in this cell can always be added in the% calls. % % If one uses the object oriented interface (see also A.3.14), the training is done by% % >> model = trainlssvm(model)% >> model = trainlssvm(model, X, Y)% % The status of the model checks whether a retraining is% needed. The extra arguments X, Y allow to re-initialize the model% with this new training data as long as its dimensions are the% same as the old initiation. % % Three training implementations are included:% %     * The C-implementation linked with CMEX: this implementation%     is based on the iterative solver Conjugate Gradient algorithm%     (CG) (lssvm.mex*). After this training call, a '-' is%     displayed. This is recommended for use on larger data sets. % %     * The C-implementation called via a buffer file: this is%     based on CG; check if the executable 'lssvmFILE.x' is in the%     current directory; (lssvmFILE.x). After this training call, a%     '-' is displayed. %  %     * The Matlab implementation: a straightforward implementation%     based on the matrix division '\' (lssvmMATLAB.m). After this%     training call, a '~' is  displayed. This is recommended for a%     number of training data points smaller than 500 (depending on%     the computer memory).  % % By default, the cmex implementation is called. If this one fails,% the Matlab implementation is chosen instead. One can specify% explicitly which implementation to use using the object oriented% interface. % % This implementation allows to train a multidimensional output% problem. If each output uses the same kernel type, kernel% parameters and regularization parameter, this is% straightforward. If not so, one can specify the different types% and/or parameters as a row vector in the appropriate% argument. Each dimension will be trained with the corresponding% column in this vector. % % >> [alpha, b] = trainlssvm({X, [Y_1 ... Y_d],type,...%                              [gam_1 ... gam_d], ...%                             [sig2_1 ... sig2_d],...%                           {kernel_1,...,kernel_d}})% % Full syntax% %     1. Using the functional interface:% % >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2})% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel})% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})% %       Outputs    %         alpha         : N x m matrix with support values of the LS-SVM%         b             : 1 x m vector with bias term(s) of the LS-SVM%       Inputs    %         X             : N x d matrix with the inputs of the training data%         Y             : N x 1 vector with the outputs of the training data%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'% %%     * Using the object oriented interface:% % >> model = trainlssvm(model)% >> model = trainlssvm({X,Y,type,gam,sig2})% >> model = trainlssvm({X,Y,type,gam,sig2,kernel})% >> model = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})% %       Outputs    %         model          : Trained object oriented representation of the LS-SVM model%       Inputs    %         model          : Object oriented representation of the LS-SVM model%         X(*)           : N x d matrix with the inputs of the training data%         Y(*)           : N x 1 vector with the outputs of the training data%         type(*)        : 'function estimation' ('f') or 'classifier' ('c')%         gam(*)         : Regularization parameter%         sig2(*)        : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)      : Kernel type (by default 'RBF_kernel')%         preprocess(*)  : 'preprocess'(*) or 'original'% % See also:%   simlssvm, initlssvm, changelssvm, plotlssvm, prelssvm, codelssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialise the model 'model'%if (iscell(model)),  model = initlssvm(model{:});end%% given X and Y?%%model = codelssvm(model);eval('model = changelssvm(model,''xtrain'',X);',';');eval('model = changelssvm(model,''ytrain'',Y);',';');eval('model = changelssvm(model,''selector'',1:size(X,1));',';');%% no training needed if status = 'trained'%if model.status(1) == 't',  if (nargout>1),    % [alpha,b]    X = model.xtrain;    Y = model.ytrain;    b = model.b;    model = model.alpha;  end  returnend  %% control of the inputs%if ~((strcmp(model.kernel_type,'RBF_kernel') & length(model.kernel_pars)>=1) |...     (strcmp(model.kernel_type,'lin_kernel') & length(model.kernel_pars)>=0) |...     (strcmp(model.kernel_type,'MLP_kernel') & length(model.kernel_pars)>=2) |...     (strcmp(model.kernel_type,'poly_kernel')& length(model.kernel_pars)>=1)),  eval('feval(model.kernel_type,model.xtrain(1,:),model.xtrain(2,:),model.kernel_pars);model.implementation=''MATLAB'';',...       'error(''The kernel type is not valid or to few arguments'');');elseif (model.steps<=0),  error('steps must be larger then 0');elseif (model.gam<=0),  error('gamma must be larger then 0');% elseif (model.kernel_pars<=0),%   error('sig2 must be larger then 0');elseif or(model.x_dim<=0, model.y_dim<=0),  error('dimension of datapoints must be larger than 0');end%% coding if needed%if model.code(1) == 'c', % changed  model = codelssvm(model);end%% preprocess%eval('if model.prestatus(1)==''c'', changed=1; else changed=0;end;','changed=0;');if model.preprocess(1) =='p' & changed,  model = prelssvm(model);elseif model.preprocess(1) =='o' & changed   model = postlssvm(model);end% clocktic;%% set & control input variables and dimensions% if (model.type(1) == 'f'), % function  dyn_pars=[];elseif (model.type(1) == 'c'), % class  dyn_pars=[];  end% only MATLABif size(model.gam,1)>1,   model.implementation='MATLAB'; end%% output dimension > 1...recursive call on each dimension%if model.y_dim>1,  if (length(model.kernel_pars)==model.y_dim | size(model.gam,2)==model.y_dim |prod(size(model.kernel_type,2))==model.y_dim)    disp('multidimensional output...');    model = trainmultidimoutput(model);    %    % wich output is wanted?    %    if (nargout>1),      X = model.xtrain;      Y = model.ytrain;      b = model.b;      model = model.alpha;    else           model.duration = toc;      model.status = 'trained';    end    return    endend%% call lssvmMATLAB.m, lssvm.mex* or lssvmFILE.m%if strcmpi(model.implementation,'CMEX'),  model.cga_startvalues = [];  eval('model.cga_startvalues;','model.cga_startvalues = [];');    eval(['[model.alpha, model.b,model.cga_startvalues] =' ...	'lssvm(model.xtrain(model.selector, 1:model.x_dim)'',model.x_dim,'...	'model.ytrain(model.selector, 1:model.y_dim),model.y_dim,'...	'model.nb_data, model.type, model.gam,' ...	'model.cga_eps, model.cga_fi_bound,model.cga_max_itr,' ...	'model.cga_startvalues,'...	'model.kernel_type,  model.kernel_pars,' ...	'model.cga_show,dyn_pars);'],...        'model.implementation=''CFILE''; disp(''converting now to CFILE implementation'');');% if error in CMEX ...endif strcmpi(model.implementation,'CFILE'),  eval('model.cga_startvalues;','model.cga_startvalues = [];');  eval('model = lssvmFILE(model,''buffer.mc'');',...       ['model.implementation=''MATLAB'';'...	'disp(''make sure lssvmFILE.x (lssvmFILE.exe) is in the' ...	 ' current directory, change now to MATLAB implementation...'');']);   % if error in CFILE ...endif strcmpi(model.implementation(1),'m'),  model = lssvmMATLAB(model);end%% wich output is wanted?%if (nargout>1),  X = model.xtrain;  Y = model.ytrain;  b = model.b;  model = model.alpha;else       model.duration = toc;  model.status = 'trained';end    %%function model = trainmultidimoutput(model)%% %  model.alpha = zeros(model.nb_data, model.y_dim);  model.b = zeros(1,model.y_dim);  model.cga_startvalues = [];  for d=1:model.y_dim,    eval('gam = model.gam(:,d);','gam = model.gam(:);');    eval('sig2 = model.kernel_pars(:,d);','sig2 = model.kernel_pars(:);');    eval('kernel = model.kernel_typejqwsuyi;','kernel=model.kernel_type;');    [model.alpha(:,d),model.b(d)] = trainlssvm({model.xtrain,model.ytrain(:,d),model.type,gam,sig2,kernel,'original'});  end    %  % wich output is wanted?  %  if (nargout>1),    X = model.xtrain;    Y = model.ytrain;    b = model.b;    model = model.alpha;  else         model.duration = toc;    model.status = 'trained';  end

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美性淫爽ww久久久久无| 亚洲成人午夜电影| 欧美一区二区性放荡片| 91丨九色丨蝌蚪丨老版| 欧美区一区二区三区| 麻豆91在线播放| 精东粉嫩av免费一区二区三区| 日本sm残虐另类| 麻豆一区二区99久久久久| 免费不卡在线视频| 精品一区二区成人精品| 国产精品一线二线三线| 国产69精品久久777的优势| 成人自拍视频在线| 99久久精品国产麻豆演员表| 欧美自拍偷拍午夜视频| 91精品在线免费| 精品成人佐山爱一区二区| 五月天久久比比资源色| 亚洲国产岛国毛片在线| 亚洲欧洲制服丝袜| 免费成人av在线| 成人午夜精品在线| 在线观看视频一区二区| 91精品国产综合久久久蜜臀粉嫩 | 国产亚洲一区字幕| 国产精品国产成人国产三级| 亚洲欧美一区二区三区孕妇| 免费一区二区视频| 成人一区二区三区在线观看| 91豆麻精品91久久久久久| 日韩一区二区精品葵司在线| 欧美经典一区二区| 亚洲国产精品久久一线不卡| 欧美裸体一区二区三区| 欧美体内she精视频| 2020国产成人综合网| 亚洲精品国产精品乱码不99| 日本aⅴ免费视频一区二区三区| 国产成人啪午夜精品网站男同| 国产精品美日韩| 午夜av电影一区| 高清beeg欧美| 欧美α欧美αv大片| 亚洲免费视频中文字幕| 国产综合色视频| 欧美电影一区二区| 亚洲欧美国产三级| 欧美成va人片在线观看| 在线电影欧美成精品| 中文字幕一区二区三区不卡| 日韩国产欧美在线视频| 91网站最新地址| 久久这里只有精品视频网| 丝袜诱惑亚洲看片| 色噜噜久久综合| 成人欧美一区二区三区黑人麻豆| 精品一区二区三区免费观看| 欧美色综合网站| 亚洲婷婷综合久久一本伊一区| 国产一区在线视频| 欧美一级在线视频| 婷婷综合五月天| 欧美三级午夜理伦三级中视频| 一区二区三区四区精品在线视频| 国产乱码精品一品二品| 91精品国产全国免费观看 | 亚洲精品乱码久久久久久久久| 国产一区在线看| xnxx国产精品| 国产麻豆成人传媒免费观看| www激情久久| 国产综合一区二区| 久久午夜电影网| 国产又粗又猛又爽又黄91精品| 欧美成人精品二区三区99精品| 美女一区二区在线观看| 欧美本精品男人aⅴ天堂| 成人18视频日本| 欧美xxxxxxxx| 国产精品一区二区视频| 国产亚洲精品免费| 成人午夜激情在线| 国产精品国产馆在线真实露脸 | 国产精品每日更新| 99久久婷婷国产精品综合| 亚洲同性gay激情无套| 色综合久久88色综合天天| 一区二区视频在线看| 欧美日韩综合一区| 免费人成精品欧美精品| 久久久久久久精| 成人国产亚洲欧美成人综合网| 亚洲欧美偷拍另类a∨色屁股| 欧美日韩一区中文字幕| 91免费看`日韩一区二区| 国产欧美一区二区三区在线老狼| 成人一区二区三区| 亚洲综合一区二区三区| 欧美一区二区在线看| 精品系列免费在线观看| 亚洲国产成人在线| 欧美无乱码久久久免费午夜一区| 午夜视频久久久久久| 亚洲精品一区二区三区精华液| 成人午夜碰碰视频| 亚洲成人三级小说| 日本一区二区三区免费乱视频 | 蜜桃av噜噜一区二区三区小说| 亚洲精品在线免费观看视频| 久久一区二区三区国产精品| 日本欧美一区二区| 国产欧美日韩卡一| 69p69国产精品| 国产成人夜色高潮福利影视| 亚洲福利视频导航| 欧美国产97人人爽人人喊| 欧美日韩国产片| 高清beeg欧美| 另类专区欧美蜜桃臀第一页| 亚洲欧洲三级电影| 337p粉嫩大胆噜噜噜噜噜91av| 色琪琪一区二区三区亚洲区| 狠狠色丁香久久婷婷综| 亚洲高清免费在线| 国产精品欧美一区喷水| 欧美一级高清片| 日韩成人免费看| 欧美日韩成人在线| 99久久精品国产一区二区三区| 麻豆成人在线观看| 亚洲国产一区在线观看| 国产精品久久久久久一区二区三区| 91精品蜜臀在线一区尤物| 色老头久久综合| youjizz国产精品| 国产麻豆视频一区二区| 久久国产精品免费| 亚洲va欧美va天堂v国产综合| 中文字幕一区在线观看视频| 久久久久久久久久久黄色| 精品伦理精品一区| 538prom精品视频线放| 91老司机福利 在线| 成人精品一区二区三区四区| 久久只精品国产| 成人午夜av在线| 国产a级毛片一区| 国产盗摄女厕一区二区三区| 国产一级精品在线| 国产综合色产在线精品| 国产精品一区二区在线播放| 激情综合亚洲精品| 九九视频精品免费| 激情av综合网| 国产精品夜夜爽| 国产91精品一区二区麻豆网站| 国产一区二区三区视频在线播放| 日本不卡一二三区黄网| 日本不卡123| 激情六月婷婷久久| 国产成人99久久亚洲综合精品| 国产iv一区二区三区| 成人不卡免费av| 色综合久久中文字幕| 色94色欧美sute亚洲线路二| 精品一区二区影视| 亚洲柠檬福利资源导航| 亚洲一区在线看| 日本91福利区| 国产精品一品视频| 99精品久久只有精品| 色综合咪咪久久| 欧美日韩黄视频| 精品成人免费观看| 国产精品国产三级国产三级人妇 | 丰满亚洲少妇av| 91免费看`日韩一区二区| 在线观看欧美精品| 欧美一级高清片在线观看| 国产亚洲自拍一区| 亚洲一二三区不卡| 麻豆成人在线观看| 亚洲另类春色国产| 懂色av中文字幕一区二区三区| 91丨porny丨蝌蚪视频| 在线电影院国产精品| 久久久久99精品一区| 亚洲精品视频在线看| 久久精品国产**网站演员| 成人av电影在线网| 777午夜精品免费视频| 国产欧美日韩不卡| 五月婷婷激情综合| 成人91在线观看| 精品999久久久| 亚洲黄色片在线观看| 国产一区二区三区免费在线观看| 色诱亚洲精品久久久久久| 欧美xxxxxxxx|