亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? train_kpca_denois.html

?? support vector machine的一個matlab工具箱
?? HTML
字號:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>train_kpca_denois.m</title><link rel="stylesheet" type="text/css" href="../../../m-syntax.css"></head><body><code><span class=h1>%&nbsp;TRAIN_KPCA_DENOIS&nbsp;Training&nbsp;of&nbsp;kernel&nbsp;PCA&nbsp;model&nbsp;for&nbsp;image&nbsp;denoising.&nbsp;</span><br><span class=help>%</span><br><span class=help>%&nbsp;<span class=help_field>Description:</span></span><br><span class=help>%&nbsp;&nbsp;The&nbsp;kernel&nbsp;PCA&nbsp;model&nbsp;is&nbsp;trained&nbsp;to&nbsp;describe&nbsp;an&nbsp;input</span><br><span class=help>%&nbsp;&nbsp;class&nbsp;of&nbsp;images&nbsp;corrupted&nbsp;by&nbsp;noise&nbsp;[Mika99b].&nbsp;The&nbsp;training&nbsp;</span><br><span class=help>%&nbsp;&nbsp;data&nbsp;contains&nbsp;images&nbsp;corrupted&nbsp;by&nbsp;noise&nbsp;and&nbsp;corresponding&nbsp;</span><br><span class=help>%&nbsp;&nbsp;ground&nbsp;truth.&nbsp;The&nbsp;free&nbsp;paramaters&nbsp;of&nbsp;the&nbsp;kernel&nbsp;PCA</span><br><span class=help>%&nbsp;&nbsp;are&nbsp;tuned&nbsp;by&nbsp;cross-validation.&nbsp;The&nbsp;objective&nbsp;function&nbsp;</span><br><span class=help>%&nbsp;&nbsp;is&nbsp;a&nbsp;sum&nbsp;of&nbsp;squared&nbsp;differences&nbsp;between&nbsp;ground&nbsp;truth&nbsp;</span><br><span class=help>%&nbsp;&nbsp;images&nbsp;and&nbsp;reconstructed&nbsp;images.&nbsp;The&nbsp;greedy&nbsp;KPCA&nbsp;algorithm&nbsp;</span><br><span class=help>%&nbsp;&nbsp;is&nbsp;used&nbsp;to&nbsp;train&nbsp;the&nbsp;kernel&nbsp;PCA&nbsp;model.</span><br><span class=help>%</span><br><span class=help>%&nbsp;See&nbsp;also</span><br><span class=help>%&nbsp;&nbsp;GREEDYKPCA,&nbsp;KPCAREC,&nbsp;KPCA.</span><br><span class=help>%</span><br><hr><span class=help1>%&nbsp;<span class=help1_field>About:</span>&nbsp;Statistical&nbsp;Pattern&nbsp;Recognition&nbsp;Toolbox</span><br><span class=help1>%&nbsp;(C)&nbsp;1999-2003,&nbsp;Written&nbsp;by&nbsp;Vojtech&nbsp;Franc&nbsp;and&nbsp;Vaclav&nbsp;Hlavac</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.cvut.cz"&gt;Czech&nbsp;Technical&nbsp;University&nbsp;Prague&lt;/a&gt;</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://www.feld.cvut.cz"&gt;Faculty&nbsp;of&nbsp;Electrical&nbsp;Engineering&lt;/a&gt;</span><br><span class=help1>%&nbsp;&lt;a&nbsp;href="http://cmp.felk.cvut.cz"&gt;Center&nbsp;for&nbsp;Machine&nbsp;Perception&lt;/a&gt;</span><br><br><span class=help1>%&nbsp;<span class=help1_field>Modifications:</span></span><br><span class=help1>%&nbsp;07-jun-2004,&nbsp;VF</span><br><span class=help1>%&nbsp;06-jun-2004,&nbsp;VF</span><br><span class=help1>%&nbsp;17-mar-2004,&nbsp;VF</span><br><br><hr><span class=comment>%&nbsp;Setting</span><br><span class=comment>%&nbsp;-------------------------------------</span><br><br>options.ker&nbsp;=&nbsp;<span class=quotes>'rbf'</span>;&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;kernel</span><br>options.m&nbsp;=&nbsp;500;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;#&nbsp;of&nbsp;basis&nbsp;vectors</span><br>options.p&nbsp;=&nbsp;10;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;deth&nbsp;of&nbsp;search&nbsp;for&nbsp;the&nbsp;best&nbsp;basis&nbsp;vector</span><br>options.verb&nbsp;=&nbsp;1;<br><br><span class=comment>%&nbsp;#&nbsp;folds&nbsp;for&nbsp;cross-validation;&nbsp;</span><br><span class=comment>%&nbsp;num_folds&nbsp;=&nbsp;1&nbsp;means&nbsp;50/50&nbsp;-&nbsp;training/testing&nbsp;part</span><br>num_folds&nbsp;=&nbsp;1;&nbsp;&nbsp;<br><br><span class=comment>%&nbsp;algorithm&nbsp;to&nbsp;compute&nbsp;kernel&nbsp;PCA</span><br><span class=comment>%KPCA_Algo&nbsp;=&nbsp;'kpca';</span><br>KPCA_Algo&nbsp;=&nbsp;<span class=quotes>'greedykpca'</span>;<br><br><span class=comment>%&nbsp;parameters&nbsp;to&nbsp;be&nbsp;evaluated&nbsp;by&nbsp;cross-validation:</span><br><span class=comment>%New_Dim_Range&nbsp;=&nbsp;[50&nbsp;100&nbsp;200&nbsp;300];&nbsp;%&nbsp;usps</span><br><span class=comment>%Arg_Range&nbsp;=&nbsp;[3.5&nbsp;4&nbsp;5&nbsp;6&nbsp;7&nbsp;8];&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;%&nbsp;usps</span><br><br>New_Dim_Range&nbsp;=&nbsp;[1&nbsp;2];&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;noisy_circle</span><br>Arg_Range&nbsp;=&nbsp;[0.5&nbsp;1&nbsp;2&nbsp;3];&nbsp;<span class=comment>%&nbsp;noisy_circle</span><br><br><span class=comment>%&nbsp;input/output&nbsp;files</span><br>input_data_file&nbsp;=&nbsp;<span class=quotes>'noisy_circle'</span>;<br>output_data_file&nbsp;=&nbsp;[];<br><span class=comment>%input_data_file&nbsp;=&nbsp;'/home.dokt/xfrancv/data/usps/usps_noisy';</span><br><span class=comment>%output_data_file&nbsp;=&nbsp;'USPSModelGreedyKPCA';</span><br><br><span class=comment>%&nbsp;Loads&nbsp;training&nbsp;and&nbsp;testing&nbsp;data.</span><br><span class=comment>%&nbsp;-------------------------------------</span><br>load(input_data_file,<span class=quotes>'trn'</span>,<span class=quotes>'tst'</span>);<br>[dim,num_data]&nbsp;=&nbsp;size(trn.X);<br><br><span class=comment>%&nbsp;Data&nbsp;partitioning&nbsp;for&nbsp;cross-validation</span><br>[itrn,itst]&nbsp;=&nbsp;crossval(num_data,num_folds);<br><br><span class=comment>%&nbsp;Tuning&nbsp;kernel&nbsp;PCA&nbsp;model</span><br><span class=comment>%&nbsp;-------------------------------------</span><br>Mse&nbsp;=&nbsp;[];<br><br><span class=keyword>for</span>&nbsp;arg&nbsp;=&nbsp;Arg_Range,<br>&nbsp;&nbsp;<span class=keyword>for</span>&nbsp;new_dim&nbsp;=&nbsp;New_Dim_Range,<br>&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'\nnew_dim&nbsp;=&nbsp;%d,&nbsp;arg&nbsp;=&nbsp;%f\n'</span>,&nbsp;new_dim,&nbsp;arg);<br>&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;cv_mse&nbsp;=&nbsp;0;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;<span class=keyword>for</span>&nbsp;i=1:num_folds,<br>&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'\n'</span>);<br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;training&nbsp;and&nbsp;validation&nbsp;part&nbsp;of&nbsp;data</span><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;trn_X&nbsp;=&nbsp;trn.gnd_X(:,itrn{i});<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;val_gnd_X&nbsp;=&nbsp;trn.gnd_X(:,itst{i});<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;val_corr_X&nbsp;=&nbsp;trn.X(:,itst{i});<br>&nbsp;&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'Computing&nbsp;Kernel&nbsp;PCA...'</span>);<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;options.arg&nbsp;=&nbsp;arg;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;options.new_dim&nbsp;=&nbsp;new_dim;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;kpca_model&nbsp;=&nbsp;<span class=eval>feval</span>(&nbsp;KPCA_Algo,&nbsp;trn_X,&nbsp;options);<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'done.\n'</span>);<br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;data&nbsp;restoration</span><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;val_reconst_X&nbsp;=&nbsp;kpcarec(val_corr_X,&nbsp;kpca_model);<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;compute&nbsp;error</span><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;dummy&nbsp;=&nbsp;(val_reconst_X&nbsp;-&nbsp;val_gnd_X).^2;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;mse&nbsp;=&nbsp;sum(dummy(:))/size(val_gnd_X,2);<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'folder&nbsp;%d/%d:&nbsp;validation&nbsp;errors&nbsp;mse=%f\n'</span>,&nbsp;...<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;i,&nbsp;num_folds,&nbsp;mse);<br>&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;cv_mse&nbsp;=&nbsp;cv_mse&nbsp;+&nbsp;mse;<br>&nbsp;&nbsp;&nbsp;&nbsp;<span class=keyword>end</span><br><br>&nbsp;&nbsp;&nbsp;&nbsp;<span class=comment>%&nbsp;compute&nbsp;cross-validation&nbsp;error</span><br>&nbsp;&nbsp;&nbsp;&nbsp;cv_mse&nbsp;=&nbsp;cv_mse/num_folds;<br>&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;Mse(find(new_dim==New_Dim_Range),find(arg==Arg_Range))&nbsp;=&nbsp;cv_mse;<br>&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'Kernel&nbsp;arg&nbsp;=&nbsp;%f:&nbsp;mse&nbsp;=&nbsp;%f\n'</span>,&nbsp;arg,&nbsp;cv_mse);<br>&nbsp;&nbsp;<span class=keyword>end</span><br><span class=keyword>end</span><br><br><span class=comment>%&nbsp;take&nbsp;the&nbsp;best&nbsp;parameters</span><br><span class=comment>%----------------------------------------------</span><br>[inx1,inx2]&nbsp;=&nbsp;find(Mse==min(Mse(:)));<br><span class=io>fprintf</span>(<span class=quotes>'\nMin(mse)&nbsp;=&nbsp;%f,&nbsp;dim&nbsp;=&nbsp;%f,&nbsp;arg&nbsp;=&nbsp;%f\n'</span>,&nbsp;...<br>&nbsp;&nbsp;&nbsp;Mse(inx1,inx2),&nbsp;New_Dim_Range(inx1),&nbsp;Arg_Range(inx2)&nbsp;);<br><br><span class=comment>%&nbsp;compute&nbsp;kernel&nbsp;PCA&nbsp;model&nbsp;with&nbsp;best&nbsp;parameters</span><br><span class=comment>%&nbsp;using&nbsp;all&nbsp;training&nbsp;data</span><br><span class=comment>%---------------------------------------------</span><br><span class=io>fprintf</span>(<span class=quotes>'Computing&nbsp;optimal&nbsp;Kernel&nbsp;PCA...'</span>);<br>options.arg&nbsp;=&nbsp;Arg_Range(inx2);<br>options.new_dim&nbsp;=&nbsp;New_Dim_Range(inx1);<br>kpca_model&nbsp;=&nbsp;<span class=eval>feval</span>(&nbsp;KPCA_Algo,&nbsp;trn.X,&nbsp;options);<br><span class=io>fprintf</span>(<span class=quotes>'done.\n'</span>);<br><br><span class=keyword>if</span>&nbsp;isempty(output_data_file),<br>&nbsp;&nbsp;<span class=comment>%&nbsp;plot&nbsp;results&nbsp;of&nbsp;tuning</span><br>&nbsp;&nbsp;<span class=graph>figure</span>;&nbsp;hold&nbsp;on;<br>&nbsp;&nbsp;xlabel(<span class=quotes>'\sigma'</span>);&nbsp;ylabel(<span class=quotes>'mse'</span>);<br><br>&nbsp;&nbsp;h&nbsp;=&nbsp;[];<br>&nbsp;&nbsp;clear&nbsp;Str;<br>&nbsp;&nbsp;<span class=keyword>for</span>&nbsp;i=1:length(New_Dim_Range),<br>&nbsp;&nbsp;&nbsp;&nbsp;h&nbsp;=&nbsp;[h,&nbsp;<span class=graph>plot</span>(Arg_Range,&nbsp;Mse(i,:),marker_color(i)&nbsp;)];<br>&nbsp;&nbsp;&nbsp;&nbsp;Str{i}&nbsp;=&nbsp;<span class=io>sprintf</span>(<span class=quotes>'dim&nbsp;=&nbsp;%d'</span>,&nbsp;New_Dim_Range(i));<br>&nbsp;&nbsp;<span class=keyword>end</span><br><br>&nbsp;&nbsp;legend(h,Str);<br><span class=keyword>else</span><br>&nbsp;&nbsp;<span class=comment>%&nbsp;save&nbsp;model&nbsp;to&nbsp;file</span><br>&nbsp;&nbsp;save(output_data_file,<span class=quotes>'Arg_Range'</span>,<span class=quotes>'New_Dim_Range'</span>,...<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=quotes>'options'</span>,<span class=quotes>'Mse'</span>,<span class=quotes>'num_folds'</span>,<span class=quotes>'input_data_file'</span>,...<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class=quotes>'output_data_file'</span>,<span class=quotes>'KPCA_Algo'</span>,<span class=quotes>'kpca_model'</span>);<br><span class=keyword>end</span><br><br><span class=comment>%&nbsp;plot&nbsp;denosing&nbsp;in&nbsp;2D&nbsp;case&nbsp;only</span><br><span class=comment>%-------------------------------------</span><br><span class=keyword>if</span>&nbsp;dim&nbsp;==&nbsp;2&nbsp;&&nbsp;isempty(output_data_file),<br><br>&nbsp;&nbsp;X&nbsp;=&nbsp;kpcarec(tst.X,kpca_model);<br><br>&nbsp;&nbsp;mse&nbsp;=&nbsp;sum(sum((X-tst.gnd_X).^2&nbsp;));<br>&nbsp;&nbsp;<span class=io>fprintf</span>(<span class=quotes>'\ntest&nbsp;mse=%f\n'</span>,&nbsp;mse);<br><br>&nbsp;&nbsp;<span class=graph>figure</span>;&nbsp;hold&nbsp;on;<br>&nbsp;&nbsp;h0=ppatterns(tst.gnd_X,<span class=quotes>'r+'</span>);<br>&nbsp;&nbsp;h1=ppatterns(tst.X,<span class=quotes>'gx'</span>);<br>&nbsp;&nbsp;h2=ppatterns(X,<span class=quotes>'bo'</span>);<br>&nbsp;&nbsp;legend([h0&nbsp;h1&nbsp;h2],<span class=quotes>'Ground&nbsp;truth'</span>,<span class=quotes>'Noisy'</span>,<span class=quotes>'Reconst'</span>);<br><span class=keyword>end</span><br><br><span class=comment>%&nbsp;EOF</span><br></code>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩国产bt| 国产精品丝袜一区| 国产片一区二区| 亚洲激情成人在线| 国产呦精品一区二区三区网站| 91视视频在线直接观看在线看网页在线看| 欧美人妇做爰xxxⅹ性高电影| 久久精品欧美一区二区三区麻豆| 亚洲一区自拍偷拍| 91在线观看高清| 欧美丰满美乳xxx高潮www| 精品日韩成人av| 亚洲美女精品一区| 国产91丝袜在线观看| 91精品久久久久久久久99蜜臂| 综合激情网...| 成人毛片视频在线观看| 精品久久国产字幕高潮| 婷婷综合五月天| 在线亚洲+欧美+日本专区| 中文字幕一区二区三中文字幕| 国产精品一区二区黑丝| 日韩精品一区二区三区四区视频 | 国产欧美日韩在线| 久久99精品久久只有精品| 欧美一级欧美三级| 亚洲高清免费在线| 在线精品亚洲一区二区不卡| 亚洲成av人片www| 国产精品无遮挡| 国产成人8x视频一区二区| 精品国产一区二区精华 | 精品国产区一区| 免费日本视频一区| 日韩三级av在线播放| 青草国产精品久久久久久| 欧美精品777| 免费高清视频精品| 欧美一区二区三区视频免费| 日韩黄色在线观看| 欧美一区二区大片| 韩国女主播一区| 久久色中文字幕| 本田岬高潮一区二区三区| 亚洲另类在线一区| 欧美精品日日鲁夜夜添| 久久69国产一区二区蜜臀| 国产亚洲污的网站| 91色在线porny| 天堂成人国产精品一区| 日韩精品在线一区| 成人免费看视频| 亚洲精品中文在线影院| 欧美高清性hdvideosex| 久久精品国产精品亚洲红杏| 国产午夜一区二区三区| 欧洲精品视频在线观看| 蜜臀91精品一区二区三区 | 国产大片一区二区| 亚洲欧洲日韩女同| 欧美精品aⅴ在线视频| 国产精品一区二区在线看| 亚洲人亚洲人成电影网站色| 欧美日韩午夜在线| 国产麻豆精品在线| 亚洲精品第一国产综合野| 欧美一区二区精品久久911| 国产91在线看| 天堂久久久久va久久久久| 久久精品亚洲精品国产欧美| 色偷偷久久一区二区三区| 麻豆成人在线观看| 亚洲综合无码一区二区| 国产亚洲美州欧州综合国 | 不卡av在线免费观看| 视频一区在线播放| 最新日韩在线视频| 精品久久久影院| 欧美午夜免费电影| 成人av手机在线观看| 美女网站色91| 亚洲国产成人tv| 亚洲成va人在线观看| 国产精品女同一区二区三区| 337p亚洲精品色噜噜噜| 日本韩国欧美一区二区三区| 国产精品系列在线播放| 日本欧美一区二区三区乱码| 亚洲久草在线视频| 欧美激情综合在线| 精品1区2区在线观看| 欧美喷水一区二区| 在线中文字幕不卡| 91免费在线看| 不卡一区在线观看| 从欧美一区二区三区| 看电视剧不卡顿的网站| 日本va欧美va欧美va精品| 一区二区三区资源| 亚洲精品免费一二三区| 18欧美乱大交hd1984| 欧美极品xxx| 国产精品久久久久影视| 国产欧美日韩在线| 亚洲国产精品激情在线观看| 久久久精品黄色| 久久综合久久综合久久| 日韩精品一区二区三区在线观看| 555夜色666亚洲国产免| 欧美一区日本一区韩国一区| 7777精品伊人久久久大香线蕉的 | 色狠狠色狠狠综合| 99久久精品99国产精品 | 亚洲精品视频一区| 亚洲精品免费播放| 一级中文字幕一区二区| 一区二区三区在线视频免费观看 | 欧美日韩国产中文| 欧美乱妇23p| 精品欧美一区二区久久| 久久久久久久久久久久久夜| 久久久亚洲午夜电影| 中文无字幕一区二区三区| 国产欧美日韩一区二区三区在线观看| 欧美激情艳妇裸体舞| 综合久久久久久久| 亚洲国产中文字幕| 欧美bbbbb| 高清国产一区二区| 波多野结衣中文字幕一区| 色综合婷婷久久| 欧美电影一区二区| 欧美精品一区二区在线观看| 亚洲国产精品激情在线观看| 一区二区三区欧美日| 日韩在线一区二区三区| 久久99精品国产麻豆婷婷洗澡| 国产成人精品三级麻豆| 在线免费不卡电影| 精品久久久三级丝袜| 国产精品久久久久久久第一福利| 悠悠色在线精品| 蜜桃一区二区三区在线| 99这里只有精品| 91精品国产色综合久久ai换脸| 久久久久久久久岛国免费| 亚洲综合久久久| 久久精品99久久久| 99精品视频一区二区三区| 88在线观看91蜜桃国自产| 久久久精品综合| 亚洲成人免费观看| 国产精品综合在线视频| 欧美亚洲禁片免费| 日本一区二区三区高清不卡| 午夜精品123| 9久草视频在线视频精品| 欧美一区二区视频观看视频| 亚洲欧洲国产专区| 麻豆国产精品官网| 欧美无砖专区一中文字| 中文字幕 久热精品 视频在线 | 99久久综合国产精品| 91精品一区二区三区久久久久久| 中文字幕不卡三区| 久久99国产精品久久99| 欧洲一区二区三区免费视频| 国产欧美日韩麻豆91| 蜜桃一区二区三区四区| 在线视频国内自拍亚洲视频| 亚洲国产精品高清| 精品综合久久久久久8888| 欧美日韩极品在线观看一区| 亚洲啪啪综合av一区二区三区| 国产麻豆欧美日韩一区| 日韩西西人体444www| 亚洲成人一区二区在线观看| 色综合中文字幕国产 | 亚洲精品在线三区| 午夜成人免费电影| 色8久久人人97超碰香蕉987| 国产欧美精品一区二区色综合朱莉| 视频一区国产视频| 日本精品免费观看高清观看| 最新日韩在线视频| 成人免费看视频| 亚洲国产精品成人综合 | 国产精品久久久久一区二区三区共| 蜜臀av国产精品久久久久| 欧美精品国产精品| 亚洲精品va在线观看| 色综合天天综合网国产成人综合天| 午夜欧美在线一二页| 欧美日韩一区精品| 亚洲成av人片在线观看| 欧美优质美女网站| 亚洲午夜久久久久久久久电影网 | 欧美性猛交xxxx乱大交退制版 | 韩日欧美一区二区三区| 久久影院午夜片一区|