亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ganders.html

?? support vector machine的一個matlab工具箱
?? HTML
字號:
<html><head>  <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1">  <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../../stpr.css"></head><body><table  border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">GANDERS</b><td valign="baseline" align="right" class="function"><a href="../../linear/anderson/index.html" target="mdsdir"><img border = 0 src="../../up.gif"></a></table>  <p><b>Solves the Generalized Anderson's task.</b></p>  <hr><div class='code'><code><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Synopsis:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;ganders(&nbsp;distrib)</span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;ganders(&nbsp;distrib,&nbsp;options)</span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;ganders(&nbsp;distrib,&nbsp;options,&nbsp;init_model&nbsp;)</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Description:</span></span><br><span class=help>&nbsp;&nbsp;This&nbsp;function&nbsp;is&nbsp;an&nbsp;implementation&nbsp;of&nbsp;the&nbsp;general&nbsp;framework&nbsp;</span><br><span class=help>&nbsp;&nbsp;to&nbsp;find&nbsp;the&nbsp;optimal&nbsp;solution&nbsp;of&nbsp;the&nbsp;Generalized&nbsp;Anderson's&nbsp;</span><br><span class=help>&nbsp;&nbsp;task&nbsp;&nbsp;[<a href="../../references.html#SH10" title = "M.I.Schlesinger and V.Hlavac. Ten lectures on statistical and structural pattern recognition. Kluwer Academic Publishers, 2002." >SH10</a>].</span><br><span class=help></span><br><span class=help>&nbsp;&nbsp;The&nbsp;goal&nbsp;of&nbsp;the&nbsp;GAT&nbsp;is&nbsp;find&nbsp;the&nbsp;binary&nbsp;linear&nbsp;classification</span><br><span class=help>&nbsp;&nbsp;rule&nbsp;(g(x)=sgn(W'*x+b)&nbsp;with&nbsp;minimal&nbsp;probability&nbsp;of&nbsp;</span><br><span class=help>&nbsp;&nbsp;misclassification.&nbsp;The&nbsp;conditional&nbsp;probabilities&nbsp;are&nbsp;known&nbsp;to&nbsp;</span><br><span class=help>&nbsp;&nbsp;be&nbsp;Gaussians&nbsp;their&nbsp;paramaters&nbsp;belong&nbsp;to&nbsp;a&nbsp;given&nbsp;set&nbsp;of&nbsp;parameters.&nbsp;</span><br><span class=help>&nbsp;&nbsp;The&nbsp;true&nbsp;parameters&nbsp;are&nbsp;not&nbsp;known.&nbsp;The&nbsp;linear&nbsp;rule&nbsp;which&nbsp;</span><br><span class=help>&nbsp;&nbsp;guarantes&nbsp;the&nbsp;minimimal&nbsp;classification&nbsp;error&nbsp;for&nbsp;the&nbsp;worst&nbsp;</span><br><span class=help>&nbsp;&nbsp;possible&nbsp;case&nbsp;(the&nbsp;worst&nbsp;configuration&nbsp;of&nbsp;Gaussains)&nbsp;is&nbsp;</span><br><span class=help>&nbsp;&nbsp;sought&nbsp;for.</span><br><span class=help>&nbsp;</span><br><span class=help>&nbsp;<span class=help_field>Input:</span></span><br><span class=help>&nbsp;&nbsp;distrib&nbsp;[struct]&nbsp;Set&nbsp;of&nbsp;binary&nbsp;labeled&nbsp;Gaussians.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Mean&nbsp;[dim&nbsp;x&nbsp;ncomp]&nbsp;Mean&nbsp;vectors.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.Cov&nbsp;[dim&nbsp;x&nbsp;dim&nbsp;x&nbsp;ncomp]&nbsp;Covariance&nbsp;matrices.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.y&nbsp;[1&nbsp;x&nbsp;ncomp]&nbsp;Labels&nbsp;of&nbsp;the&nbsp;Gaussians&nbsp;(1&nbsp;or&nbsp;2).</span><br><span class=help>&nbsp;</span><br><span class=help>&nbsp;&nbsp;options&nbsp;[struct]&nbsp;Determines&nbsp;stopping&nbsp;conditions:</span><br><span class=help>&nbsp;&nbsp;&nbsp;.tmax&nbsp;[1x1]&nbsp;Maximal&nbsp;number&nbsp;of&nbsp;iterations&nbsp;(default&nbsp;inf).</span><br><span class=help>&nbsp;&nbsp;&nbsp;.eps&nbsp;[1x1]&nbsp;Minimal&nbsp;improvement&nbsp;of&nbsp;the&nbsp;optimized&nbsp;</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;criterion&nbsp;(default&nbsp;1e-6).</span><br><span class=help>&nbsp;&nbsp;&nbsp;.mineps_tmax&nbsp;[1x1]&nbsp;Number&nbsp;of&nbsp;iterations&nbsp;of&nbsp;the&nbsp;one-dimensional&nbsp;</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;numerical&nbsp;search&nbsp;(default&nbsp;100).</span><br><span class=help></span><br><span class=help>&nbsp;&nbsp;init_model&nbsp;[struct]&nbsp;Initial&nbsp;model:</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;.W,&nbsp;.b,&nbsp;.t&nbsp;see&nbsp;below.</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Output:</span></span><br><span class=help>&nbsp;&nbsp;model&nbsp;[struct]&nbsp;Binary&nbsp;linear&nbsp;classifer:</span><br><span class=help>&nbsp;&nbsp;&nbsp;.W&nbsp;[dim&nbsp;x&nbsp;1]&nbsp;Normal&nbsp;vector&nbsp;of&nbsp;the&nbsp;found&nbsp;hyperplane&nbsp;W'*x&nbsp;+&nbsp;b&nbsp;=&nbsp;0.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.b&nbsp;[1x1]&nbsp;Bias&nbsp;of&nbsp;the&nbsp;hyperplane.</span><br><span class=help>&nbsp;</span><br><span class=help>&nbsp;&nbsp;&nbsp;.r&nbsp;[1x1]&nbsp;Mahalanobis&nbsp;distance&nbsp;for&nbsp;the&nbsp;cloasest&nbsp;Gaussian.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.err&nbsp;[1x1]&nbsp;Probability&nbsp;of&nbsp;misclassification.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.t&nbsp;[1x1]&nbsp;Number&nbsp;of&nbsp;iterations.</span><br><span class=help>&nbsp;&nbsp;&nbsp;.exitflag&nbsp;[1x1]&nbsp;0&nbsp;...&nbsp;maximal&nbsp;number&nbsp;of&nbsp;iterations&nbsp;was&nbsp;exceeded.</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1&nbsp;...&nbsp;solution&nbsp;was&nbsp;found.</span><br><span class=help>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-1&nbsp;...&nbsp;solution&nbsp;(with&nbsp;err&nbsp;&lt;&nbsp;0.5)&nbsp;does&nbsp;not&nbsp;exist.</span><br><span class=help></span><br><span class=help>&nbsp;<span class=help_field>Example:</span></span><br><span class=help>&nbsp;&nbsp;distrib&nbsp;=&nbsp;load('mars');</span><br><span class=help>&nbsp;&nbsp;model&nbsp;=&nbsp;ganders(&nbsp;distrib&nbsp;);</span><br><span class=help>&nbsp;&nbsp;figure;&nbsp;pandr(&nbsp;model,&nbsp;distrib&nbsp;);</span><br><span class=help></span><br><span class=help>&nbsp;<span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also>&nbsp;&nbsp;<a href = "../../linear/anderson/androrig.html" target="mdsbody">ANDRORIG</a>,&nbsp;<a href = "../../linear/anderson/eanders.html" target="mdsbody">EANDERS</a>,&nbsp;<a href = "../../linear/anderson/ggradandr.html" target="mdsbody">GGRADANDR</a>,&nbsp;<a href = "../../linear/anderson/andrerr.html" target="mdsbody">ANDRERR</a>,&nbsp;<a href = "../../linear/linclass.html" target="mdsbody">LINCLASS</a>.</span><br><span class=help></span><br></code></div>  <hr>  <b>Source:</b> <a href= "../../linear/anderson/list/ganders.html">ganders.m</a>  <p><b class="info_field">About: </b>  Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br>  <p><b class="info_field">Modifications: </b> <br> 4-may-2004, VF<br> 17-sep-2003, VF<br></body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲品质自拍视频| 亚洲va韩国va欧美va精品| 精品一区二区三区影院在线午夜| 欧美在线观看一区| 亚洲精品亚洲人成人网| 99久久精品国产网站| 亚洲欧洲一区二区三区| www.欧美.com| 亚洲视频中文字幕| 色综合天天狠狠| 亚洲另类春色校园小说| 色综合 综合色| 亚洲国产日韩一级| 欧美日韩在线播| 日本中文在线一区| 日韩一级视频免费观看在线| 美女视频免费一区| 精品国产乱子伦一区| 久久精品国产免费| www国产精品av| 国产高清不卡一区| 欧美极品aⅴ影院| 97成人超碰视| 亚洲午夜在线观看视频在线| 欧美日韩精品三区| 青青草97国产精品免费观看| 日韩欧美一区二区在线视频| 久久精品久久久精品美女| 精品国产91洋老外米糕| 国产99久久久国产精品免费看| 欧美激情艳妇裸体舞| 99久久精品免费看国产 | 欧美激情一区二区三区不卡| jlzzjlzz欧美大全| 亚洲一级电影视频| 在线播放日韩导航| 国产在线视频精品一区| 国产精品久久久久久久岛一牛影视| 99国产精品一区| 亚洲成人久久影院| 日韩精品一区二区三区视频播放| 国产综合久久久久久久久久久久| 国产精品久久久久久妇女6080| 欧洲一区二区av| 老司机午夜精品| 国产精品美女久久久久高潮| 91成人在线免费观看| 日韩成人一级大片| 中文欧美字幕免费| 欧美性大战久久| 韩国成人在线视频| 亚洲视频一二三| 欧美电影在线免费观看| 国产一区二区三区| 亚洲日本va在线观看| 3atv在线一区二区三区| 国产一区二区三区四区五区美女 | 成人av动漫在线| 亚洲成人精品一区| 国产欧美1区2区3区| 欧美日韩一区久久| 国产一区二区三区在线观看精品 | 丝袜美腿一区二区三区| 国产亚洲欧美激情| 欧美日本免费一区二区三区| 精品一区二区三区免费| 亚洲男人电影天堂| 精品国产免费人成在线观看| 色综合久久久久| 国产一区二区三区四区五区入口| 一区二区三区欧美| 国产日韩精品一区| 7777精品伊人久久久大香线蕉超级流畅 | 日韩免费电影网站| 91一区一区三区| 精品无码三级在线观看视频 | 中文字幕一区二区三区av| 欧美一区二区三区四区五区| a级精品国产片在线观看| 免费精品视频在线| 亚洲激情欧美激情| 久久久电影一区二区三区| 欧美日韩国产综合视频在线观看 | 精品国产一区二区三区av性色| 色女孩综合影院| 国产精品一卡二| 日韩电影在线免费看| 亚洲激情五月婷婷| 国产精品麻豆视频| 久久久五月婷婷| 日韩视频免费观看高清完整版在线观看| 91香蕉视频污| 国产福利91精品一区二区三区| 午夜精品福利视频网站| 日韩美女啊v在线免费观看| 久久久久久影视| 91精品久久久久久久久99蜜臂| 一本大道久久a久久精二百| 国产精品 日产精品 欧美精品| 日韩激情视频网站| 一区二区三区在线高清| 国产精品少妇自拍| 久久在线观看免费| 在线不卡免费av| 欧美日韩视频在线观看一区二区三区 | 国产欧美一区二区三区在线看蜜臀| 日韩一区二区在线观看| 欧美日韩国产一区| 色综合天天视频在线观看| 成人av小说网| 成人性生交大合| 国产精品1区2区3区在线观看| 青草国产精品久久久久久| 天天综合日日夜夜精品| 一区二区日韩av| 亚洲蜜桃精久久久久久久| 1区2区3区国产精品| 中文字幕不卡在线观看| 国产亚洲精品7777| 欧美哺乳videos| 欧美电影免费观看高清完整版在线观看| 91精品国产麻豆国产自产在线| 欧美性受xxxx黑人xyx性爽| 91美女片黄在线观看| 色综合激情久久| 91福利社在线观看| 91亚洲精品久久久蜜桃| 99精品黄色片免费大全| 波多野结衣在线一区| 成人黄色电影在线 | kk眼镜猥琐国模调教系列一区二区| 国产成人久久精品77777最新版本 国产成人鲁色资源国产91色综 | 日韩欧美高清dvd碟片| 91精品国产一区二区| 日韩精品一区二区三区视频播放 | 暴力调教一区二区三区| 成人性生交大合| 99re成人精品视频| 色老综合老女人久久久| 色综合天天综合网天天狠天天| 91久久精品国产91性色tv| 欧洲国产伦久久久久久久| 欧美私人免费视频| 欧美肥胖老妇做爰| 日韩一区二区三区四区| 久久亚洲二区三区| 中文字幕电影一区| 亚洲啪啪综合av一区二区三区| 一区二区三区毛片| 丝袜美腿亚洲色图| 黄一区二区三区| 成人精品小蝌蚪| 色成人在线视频| 欧美日韩国产电影| 欧美电视剧在线看免费| 欧美韩日一区二区三区四区| 中文字幕综合网| 亚洲va欧美va人人爽午夜 | 日韩精品国产精品| 国产麻豆精品在线| 色综合久久综合中文综合网| 欧美午夜不卡视频| 日韩精品一区二区三区蜜臀| 亚洲国产成人一区二区三区| 亚洲三级理论片| 丝袜国产日韩另类美女| 国产在线麻豆精品观看| 成人天堂资源www在线| 欧美在线视频日韩| 精品久久久网站| 日韩美女精品在线| 日本特黄久久久高潮| 国产精品主播直播| 91成人看片片| 日韩欧美国产一二三区| 国产精品免费丝袜| 亚洲成av人影院| 国产精品夜夜嗨| 在线视频欧美精品| 精品理论电影在线| 亚洲欧美另类图片小说| 免费看黄色91| 91美女片黄在线| 精品日韩一区二区三区免费视频| 国产精品免费看片| 天天色天天操综合| 丁香亚洲综合激情啪啪综合| 欧美亚洲动漫精品| 日本一区二区免费在线观看视频| 亚洲高清视频中文字幕| 国产精品一区二区三区乱码| 欧美亚洲国产bt| 国产蜜臀av在线一区二区三区| 性欧美大战久久久久久久久| 国产精品自拍av| 欧美美女一区二区三区| 日本一区二区三区国色天香| 日韩中文字幕麻豆| av一本久道久久综合久久鬼色| 欧美一区二区三区婷婷月色|