亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? emgmm.m~

?? support vector machine的一個matlab工具箱
?? M~
字號:
function model=emgmm(X,options,init_model)% EMGMM Expectation-Maximization Algorithm for Gaussian mixture model.% % Synopsis:%  model = emgmm(X)%  model = emgmm(X,options)%  model = emgmm(X,options,init_model)%% Description:%  This function implements the Expectation-Maximization algorithm %  (EM) [Schles68][DLR77] which computes the maximum-likelihood %  estimate of the paramaters of the Gaussian mixture model (GMM). %  The EM algorithm is an iterative procedure which monotonically %  increases log-likelihood of the current estimate until it reaches %  a local optimum. %%  The number of components of the GMM is given in options.ncomp %  (default 2).%%  The following three stopping are condition used:%   1. Improvement of the log-likelihood is less than given%      threshold%                logL(t+1)  - logL(t) < options.eps_logL%   2. Change of the squared differences of a estimated posteriory %      probabilities is less than given threshold%               ||alpha(t+1) - alpha(t)||^2 < options.eps_alpha%   3. Number of iterations exceeds given threshold.%               t >= options.tmax %%  The type of estimated covariance matrices is optional:%    options.cov_type = 'full'      full covariance matrix (default)%    options.cov_type = 'diag'      diagonal covarinace matrix%    cov_options.type = 'spherical' spherical covariance matrix%%  The initial model (estimate) is selected:%    1. randomly (options.init = 'random') %    2. using K-means (options.init = 'kmeans')%    3. using the user specified init_model.%% Input:%  X [dim x num_data] Data sample.%  %  options [struct] Control paramaters:%   .ncomp [1x1] Number of components of GMM (default 2).%   .tmax [1x1] Maximal number of iterations (default inf).%   .eps_logL [1x1] Minimal improvement in log-likelihood (default 0).%   .eps_alpha [1x1] Minimal change of Alphas (default 0).%   .cov_type [1x1] Type of estimated covarince matrices (see above).%   .init [string] 'random' use random initial model (default);%                  'kmeans' use K-means to find initial model.%   .verb [1x1] If 1 then info is displayed (default 0).% %  init_model [struct] Initial model:%   .Mean [dim x ncomp] Mean vectors.%   .Cov [dim x dim x ncomp] Covariance matrices.%   .Priors [1 x ncomp] Weights of mixture components.%   .Alpha [ncomp x num_data] (optional) Distribution of hidden state.%   .t [1x1] (optional) Counter of iterations.%% Output:%  model [struct] Estimated Gaussian mixture model:%   .Mean [dim x ncomp] Mean vectors.%   .Cov [dim x dim x ncomp] Covariance matrices.%   .Prior [1 x ncomp] Weights of mixture components.%   .t [1x1] Number iterations.%   .options [struct] Copy of used options.%   .exitflag [int] 0      ... maximal number of iterations was exceeded.%                   1 or 2 ... EM has converged; indicates which stopping %                              was used (see above).%  % Example:% Note: if EM algorithm does not converge run it again from different% initial model.%% EM is used to estimate parameters of mixture of 2 Guassians:%  true_model = struct('Mean',[-2 2],'Cov',[1 0.5],'Prior',[0.4 0.6]);%  sample = gmmsamp(true_model, 100);%  estimated_model = emgmm(sample.X,struct('ncomp',2,'verb',1));%%  figure; ppatterns(sample.X);%  h1=pgmm(true_model,struct('color','r'));%  h2=pgmm(estimated_model,struct('color','b'));%  legend([h1(1) h2(1)],'Ground truth', 'ML estimation'); %  figure; hold on; xlabel('iterations'); ylabel('log-likelihood');%  plot( estimated_model.logL );%% See also %  MLCGMM, MMGAUSS, PDFGMM, GMMSAMP.%% About: Statistical Patte7rn Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 26-may-2004, VF, initialization by K-means added% 1-may-2004, VF% 19-sep-2003, VF% 16-mar-2003, VF% processing input arguments % -----------------------------------------if nargin < 2, options=[]; else options=c2s(options); endif ~isfield( options, 'ncomp'), options.ncomp = 2; endif ~isfield( options, 'tmax'), options.tmax = inf; endif ~isfield( options, 'eps_alpha'), options.eps_alpha = 0; endif ~isfield( options, 'eps_logL'), options.eps_logL = 0; endif ~isfield( options, 'cov_type'), options.cov_type = 'full'; endif ~isfield( options, 'init'), options.init = 'random'; endif ~isfield( options, 'verb'), options.verb = 0; end[dim,num_data] = size(X);% setup initial model % ---------------------------------if nargin == 3,  % take model from input  %-----------------------------  model = init_model;   if ~isfield(model,'t'), model.t = 0; end  if ~isfield(model,'Alpha'),      model.Alpha=-inf*ones(options.num_gauss,num_data);  end  if ~isfield(model,'logL'), model.logL=-inf; endelse    % compute initial model  %------------------------------------  switch options.init,    % random model    case 'random'      % takes randomly first num_gauss trn. vectors as mean vectors     inx = randperm(num_data);       inx=inx(1:options.ncomp);     centers_X = X(:,inx);      % K-means clustering    case 'kmeans'     centers_X = kmeans( X, options.ncomp );    otherwise     error('Unknown initialization method.');  end  knn = knnrule({'X',centers_X,'y',[1:options.ncomp]},1);  y = knnclass(X,knn);  % uses ML estimation of complete data  model = mlcgmm( {'X',X,'y',y}, options.cov_type );  model.Alpha = zeros(options.ncomp,num_data);  for i = 1:options.ncomp,    model.Alpha(i,find(y==i)) = 1;  end  model.logL= -inf;  model.t = 1;  model.options = options;  model.fun = 'pdfgmm';  end% Main loop of EM algorithm % -------------------------------------model.exitflag = 0;while model.exitflag == 0 & model.t < options.tmax,  % counter of iterations  model.t = model.t + 1;    %----------------------------------------------------  % E-Step  % The distribution of hidden states is computed based  % on the current estimate.  %----------------------------------------------------  newAlpha = (model.Prior(:)*ones(1,num_data)).*pdfgauss(X, model);  newLogL = sum(log(sum(newAlpha,1)));    newAlpha = newAlpha./(ones(options.ncomp,1)*sum(newAlpha,1));  %------------------------------------------------------  % Stopping conditions.  %------------------------------------------------------    % 1) change in distribution of hidden state Alpha  model.delta_alpha = sum(sum((model.Alpha - newAlpha).^2));    % 2) change in log-Likelihood  model.delta_logL = newLogL - model.logL(end);  model.logL = [model.logL newLogL];    if options.verb,    fprintf('%d: logL=%f, delta_logL=%f, delta_alpha=%f\n',...        model.t, model.logL(end), model.delta_logL, model.delta_alpha );  end  if options.eps_logL >= model.delta_logL,    model.exitflag = 1;  elseif options.eps_alpha >= model.delta_alpha,    model.exitflag = 2;  else    model.Alpha = newAlpha;      %----------------------------------------------------    % M-Step    % The new parameters maximizing expectation of     % log-likelihood are computed.    %----------------------------------------------------    tmp_model = melgmm(X,model.Alpha,options.cov_type);        model.Mean = tmp_model.Mean;    model.Cov = tmp_model.Cov;    model.Prior = tmp_model.Prior;    endend % while main loopreturn;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
不卡的电影网站| 精品美女一区二区| 精品奇米国产一区二区三区| 国产亚洲成av人在线观看导航| 一区二区三区四区不卡在线| 蜜臀av一区二区在线观看| 成人h精品动漫一区二区三区| 69堂国产成人免费视频| 亚洲色大成网站www久久九九| 久久99国内精品| 制服.丝袜.亚洲.另类.中文 | 亚洲综合一二区| 国产精品一线二线三线精华| 国产亲近乱来精品视频| 视频在线观看91| 在线观看免费亚洲| 亚洲欧洲日韩一区二区三区| 国产一区二区91| 日韩欧美成人激情| 日本特黄久久久高潮| 欧美伊人精品成人久久综合97| 日本一区二区三区国色天香| 久久9热精品视频| 宅男在线国产精品| 日韩综合在线视频| 欧美精三区欧美精三区| 香蕉成人伊视频在线观看| 欧洲精品中文字幕| 夜夜精品视频一区二区| 91香蕉视频污| 亚洲精品日日夜夜| 色综合久久天天综合网| 国产精品福利一区| 99r精品视频| 亚洲欧美日韩人成在线播放| 99久久精品国产一区二区三区| 国产精品麻豆99久久久久久| 99久久国产综合精品女不卡| 亚洲视频在线一区| 欧美专区在线观看一区| 亚洲一区二区三区四区在线观看| 在线观看国产日韩| 日日摸夜夜添夜夜添精品视频| 欧美日韩美女一区二区| 日本中文字幕一区二区有限公司| 欧美一区三区四区| 激情综合网av| 国产精品毛片无遮挡高清| 色综合网站在线| 香蕉成人啪国产精品视频综合网| 日韩免费观看高清完整版| 狠狠久久亚洲欧美| 国产人妖乱国产精品人妖| 一本大道av一区二区在线播放| 亚洲影院在线观看| 欧美不卡一区二区三区| 顶级嫩模精品视频在线看| 亚洲免费观看高清在线观看| 678五月天丁香亚洲综合网| 老汉av免费一区二区三区| 欧美国产禁国产网站cc| 日本高清不卡视频| 久久综合综合久久综合| 欧美激情中文字幕| 欧美日韩视频专区在线播放| 久久国产成人午夜av影院| 国产精品久久久久aaaa樱花| 欧美少妇bbb| 国产乱码字幕精品高清av| 亚洲美女偷拍久久| 亚洲综合色网站| 精品国产第一区二区三区观看体验| 成人免费看视频| 日韩电影一区二区三区| 欧美高清在线一区| 欧美一区二区视频在线观看| 成人av电影免费在线播放| 日韩不卡在线观看日韩不卡视频| 国产欧美日韩综合| 这里是久久伊人| 色先锋资源久久综合| 韩国av一区二区三区| 香蕉乱码成人久久天堂爱免费| 久久久综合精品| 欧美日韩夫妻久久| 色老综合老女人久久久| 国模少妇一区二区三区| 亚洲mv在线观看| 成人免费一区二区三区视频 | 9i看片成人免费高清| 美腿丝袜亚洲三区| 天堂蜜桃91精品| 悠悠色在线精品| 欧美激情在线观看视频免费| 日韩一区二区三区在线视频| 色欧美日韩亚洲| a4yy欧美一区二区三区| 成人丝袜高跟foot| 国模套图日韩精品一区二区| 日韩国产欧美在线观看| 婷婷综合在线观看| 一区二区不卡在线播放| 亚洲美女视频一区| 亚洲女与黑人做爰| 国产精品久久综合| 亚洲国产成人午夜在线一区| 国产午夜亚洲精品午夜鲁丝片 | 欧美日韩一区成人| 色狠狠一区二区| 91猫先生在线| 91在线视频观看| 成人app软件下载大全免费| 丁香六月久久综合狠狠色| 国产精品一线二线三线精华| 国产一本一道久久香蕉| 精品亚洲porn| 国产成人午夜视频| 国产精品一级在线| 国产电影一区在线| 成人在线一区二区三区| 国产69精品久久99不卡| 成人app网站| 91福利在线免费观看| 欧美日韩国产成人在线免费| 欧美麻豆精品久久久久久| 91麻豆精品久久久久蜜臀| 日韩欧美国产系列| 国产人成亚洲第一网站在线播放 | 成人免费看的视频| 欧美久久久久中文字幕| 欧美一区二区三区公司| www成人在线观看| 欧美国产日韩精品免费观看| 亚洲色图视频网| 天天影视涩香欲综合网| 免费一级片91| 国产精品亚洲一区二区三区在线| 成人久久视频在线观看| 91免费精品国自产拍在线不卡| 在线视频一区二区三区| 欧美顶级少妇做爰| 久久久久久久精| 亚洲欧美日韩综合aⅴ视频| 无码av中文一区二区三区桃花岛| 久久aⅴ国产欧美74aaa| 99久久婷婷国产精品综合| 精品视频在线免费| 久久精品网站免费观看| 亚洲精品中文字幕在线观看| 玖玖九九国产精品| 91年精品国产| 亚洲精品在线电影| 亚洲日本va在线观看| 乱一区二区av| 91网站在线播放| 精品伦理精品一区| 亚洲乱码中文字幕综合| 久久精品国产精品亚洲精品| 成人免费毛片高清视频| 日韩一区二区三区观看| 中文字幕在线不卡视频| 免费成人美女在线观看| av电影在线观看不卡| 欧美本精品男人aⅴ天堂| 一级中文字幕一区二区| 国产精品99久久久久久久vr| 欧美久久一区二区| 亚洲情趣在线观看| 国产一区日韩二区欧美三区| 欧美性大战xxxxx久久久| 中文字幕电影一区| 久久av中文字幕片| 91精品国产综合久久久蜜臀图片| 国产精品久久久久久久第一福利 | 日韩成人免费在线| 99re6这里只有精品视频在线观看 99re8在线精品视频免费播放 | 欧美a一区二区| 欧美区在线观看| 亚洲精品日韩一| 成人国产亚洲欧美成人综合网 | 精品一区二区三区在线视频| 欧美在线观看一区| 亚洲视频网在线直播| 国产福利一区二区三区视频| 日韩午夜在线影院| 日韩—二三区免费观看av| 91精品福利视频| 亚洲人精品午夜| av网站一区二区三区| 中文字幕不卡在线播放| 欧美日韩免费一区二区三区| 亚洲欧美偷拍卡通变态| 91年精品国产| 亚洲免费观看在线视频| 99r精品视频| 一区二区三区精密机械公司| 99视频精品全部免费在线| 国产欧美综合在线观看第十页| 国产一区二区三区精品欧美日韩一区二区三区 | 午夜激情久久久|