亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? emgmm.m

?? support vector machine的一個matlab工具箱
?? M
字號:
function model=emgmm(X,options,init_model)% EMGMM Expectation-Maximization Algorithm for Gaussian mixture model.% % Synopsis:%  model = emgmm(X)%  model = emgmm(X,options)%  model = emgmm(X,options,init_model)%% Description:%  This function implements the Expectation-Maximization algorithm %  (EM) [Schles68][DLR77] which computes the maximum-likelihood %  estimate of the paramaters of the Gaussian mixture model (GMM). %  The EM algorithm is an iterative procedure which monotonically %  increases log-likelihood of the current estimate until it reaches %  a local optimum. %%  The number of components of the GMM is given in options.ncomp %  (default 2).%%  The following three stopping are condition used:%   1. Improvement of the log-likelihood is less than given%      threshold%                logL(t+1)  - logL(t) < options.eps_logL%   2. Change of the squared differences of a estimated posteriory %      probabilities is less than given threshold%               ||alpha(t+1) - alpha(t)||^2 < options.eps_alpha%   3. Number of iterations exceeds given threshold.%               t >= options.tmax %%  The type of estimated covariance matrices is optional:%    options.cov_type = 'full'      full covariance matrix (default)%    options.cov_type = 'diag'      diagonal covarinace matrix%    cov_options.type = 'spherical' spherical covariance matrix%%  The initial model (estimate) is selected:%    1. randomly (options.init = 'random') %    2. using K-means (options.init = 'kmeans')%    3. using the user specified init_model.%% Input:%  X [dim x num_data] Data sample.%  %  options [struct] Control paramaters:%   .ncomp [1x1] Number of components of GMM (default 2).%   .tmax [1x1] Maximal number of iterations (default inf).%   .eps_logL [1x1] Minimal improvement in log-likelihood (default 0).%   .eps_alpha [1x1] Minimal change of Alphas (default 0).%   .cov_type [1x1] Type of estimated covarince matrices (see above).%   .init [string] 'random' use random initial model (default);%                  'kmeans' use K-means to find initial model.%   .verb [1x1] If 1 then info is displayed (default 0).% %  init_model [struct] Initial model:%   .Mean [dim x ncomp] Mean vectors.%   .Cov [dim x dim x ncomp] Covariance matrices.%   .Priors [1 x ncomp] Weights of mixture components.%   .Alpha [ncomp x num_data] (optional) Distribution of hidden state.%   .t [1x1] (optional) Counter of iterations.%% Output:%  model [struct] Estimated Gaussian mixture model:%   .Mean [dim x ncomp] Mean vectors.%   .Cov [dim x dim x ncomp] Covariance matrices.%   .Prior [1 x ncomp] Weights of mixture components.%   .t [1x1] Number iterations.%   .options [struct] Copy of used options.%   .exitflag [int] 0      ... maximal number of iterations was exceeded.%                   1 or 2 ... EM has converged; indicates which stopping %                              was used (see above).%  % Example:% Note: if EM algorithm does not converge run it again from different% initial model.%% EM is used to estimate parameters of mixture of 2 Guassians:%  true_model = struct('Mean',[-2 2],'Cov',[1 0.5],'Prior',[0.4 0.6]);%  sample = gmmsamp(true_model, 100);%  estimated_model = emgmm(sample.X,struct('ncomp',2,'verb',1));%%  figure; ppatterns(sample.X);%  h1=pgmm(true_model,struct('color','r'));%  h2=pgmm(estimated_model,struct('color','b'));%  legend([h1(1) h2(1)],'Ground truth', 'ML estimation'); %  figure; hold on; xlabel('iterations'); ylabel('log-likelihood');%  plot( estimated_model.logL );%% See also %  MLCGMM, MMGAUSS, PDFGMM, GMMSAMP.%% About: Statistical Patte7rn Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 26-may-2004, VF, initialization by K-means added% 1-may-2004, VF% 19-sep-2003, VF% 16-mar-2003, VF% processing input arguments % -----------------------------------------if nargin < 2, options=[]; else options=c2s(options); endif ~isfield( options, 'ncomp'), options.ncomp = 2; endif ~isfield( options, 'tmax'), options.tmax = inf; endif ~isfield( options, 'eps_alpha'), options.eps_alpha = 0; endif ~isfield( options, 'eps_logL'), options.eps_logL = 0; endif ~isfield( options, 'cov_type'), options.cov_type = 'full'; endif ~isfield( options, 'init'), options.init = 'random'; endif ~isfield( options, 'verb'), options.verb = 0; end[dim,num_data] = size(X);% setup initial model % ---------------------------------if nargin == 3,  % take model from input  %-----------------------------  model = init_model;   if ~isfield(model,'t'), model.t = 0; end  if ~isfield(model,'Alpha'),      model.Alpha=-inf*ones(options.num_gauss,num_data);  end  if ~isfield(model,'logL'), model.logL=-inf; endelse    % compute initial model  %------------------------------------  switch options.init,    % random model    case 'random'      % takes randomly first num_gauss trn. vectors as mean vectors     inx = randperm(num_data);       inx=inx(1:options.ncomp);     centers_X = X(:,inx);      % K-means clustering    case 'kmeans'     tmp = kmeans( X, options.ncomp );     centers_X = tmp.X;    otherwise     error('Unknown initialization method.');  end  knn = knnrule({'X',centers_X,'y',[1:options.ncomp]},1);  y = knnclass(X,knn);  % uses ML estimation of complete data  model = mlcgmm( {'X',X,'y',y}, options.cov_type );  model.Alpha = zeros(options.ncomp,num_data);  for i = 1:options.ncomp,    model.Alpha(i,find(y==i)) = 1;  end  model.logL= -inf;  model.t = 1;  model.options = options;  model.fun = 'pdfgmm';  end% Main loop of EM algorithm % -------------------------------------model.exitflag = 0;while model.exitflag == 0 & model.t < options.tmax,  % counter of iterations  model.t = model.t + 1;    %----------------------------------------------------  % E-Step  % The distribution of hidden states is computed based  % on the current estimate.  %----------------------------------------------------  newAlpha = (model.Prior(:)*ones(1,num_data)).*pdfgauss(X, model);  newLogL = sum(log(sum(newAlpha,1)));    newAlpha = newAlpha./(ones(options.ncomp,1)*sum(newAlpha,1));  %------------------------------------------------------  % Stopping conditions.  %------------------------------------------------------    % 1) change in distribution of hidden state Alpha  model.delta_alpha = sum(sum((model.Alpha - newAlpha).^2));    % 2) change in log-Likelihood  model.delta_logL = newLogL - model.logL(end);  model.logL = [model.logL newLogL];    if options.verb,    fprintf('%d: logL=%f, delta_logL=%f, delta_alpha=%f\n',...        model.t, model.logL(end), model.delta_logL, model.delta_alpha );  end  if options.eps_logL >= model.delta_logL,    model.exitflag = 1;  elseif options.eps_alpha >= model.delta_alpha,    model.exitflag = 2;  else    model.Alpha = newAlpha;      %----------------------------------------------------    % M-Step    % The new parameters maximizing expectation of     % log-likelihood are computed.    %----------------------------------------------------    tmp_model = melgmm(X,model.Alpha,options.cov_type);        model.Mean = tmp_model.Mean;    model.Cov = tmp_model.Cov;    model.Prior = tmp_model.Prior;    endend % while main loopreturn;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲最色的网站| 奇米在线7777在线精品| av成人老司机| 久久久午夜精品| 国产一区二区三区最好精华液| 欧美在线影院一区二区| 午夜精品久久久久久久久久| 3751色影院一区二区三区| 亚洲韩国精品一区| 久久久久久久网| 欧美日韩国产乱码电影| 久久国产精品免费| 亚洲婷婷综合久久一本伊一区| 99久久国产综合精品色伊| 一区二区三区久久| 久久精品一区四区| 91国偷自产一区二区开放时间 | 欧美日韩在线三级| 午夜视频在线观看一区二区 | 国产精品一二二区| 亚洲欧美在线观看| 欧美一级专区免费大片| 91福利精品第一导航| 国产一区二区三区四区五区美女 | 国产高清精品在线| 精品中文字幕一区二区小辣椒 | 欧美一区二区三区在线电影| 成人激情免费电影网址| 精品一区二区三区的国产在线播放| 国产精品初高中害羞小美女文| 欧美日韩激情一区二区三区| 色婷婷久久99综合精品jk白丝| 美女精品一区二区| 天堂影院一区二区| 美国一区二区三区在线播放| 美女视频免费一区| 久久99热狠狠色一区二区| 亚洲综合小说图片| 三级欧美在线一区| 日本在线不卡视频一二三区| 日韩国产精品久久| 国内精品伊人久久久久av一坑 | 欧美一区二区人人喊爽| 久久久www成人免费毛片麻豆| 中国色在线观看另类| 国产免费久久精品| 国产日韩三级在线| 亚洲欧美色综合| 久久精品国产精品亚洲精品| 久久99热99| 欧美主播一区二区三区美女| 在线播放欧美女士性生活| 精品国产乱子伦一区| 自拍偷在线精品自拍偷无码专区| 午夜精品爽啪视频| 99精品1区2区| 精品国内二区三区| 亚洲香肠在线观看| 成人免费视频一区二区| 欧美日本在线视频| 国产午夜精品久久| 国产精品一区二区在线看| 在线视频综合导航| 亚洲精品视频一区| 色综合天天在线| 国产精品视频yy9299一区| 日韩成人免费在线| 欧美色欧美亚洲另类二区| 国产精品久久久久久久久久久免费看| 婷婷国产在线综合| 99视频有精品| 亚洲欧美日韩在线不卡| 97久久超碰国产精品| 欧美videos中文字幕| 五月天视频一区| 欧美一区二区视频观看视频| 亚洲电影视频在线| 欧美精品xxxxbbbb| 久久精品国内一区二区三区| 欧美日韩视频在线观看一区二区三区 | 日韩欧美国产电影| 美国十次综合导航| 久久精品一区二区三区av| 国产乱人伦偷精品视频免下载| 久久综合成人精品亚洲另类欧美 | 国产在线播放一区| 国产日韩欧美一区二区三区乱码| 日本一不卡视频| 日韩欧美国产高清| 国产精品18久久久| 亚洲一区二区欧美激情| 日韩三级高清在线| 91网页版在线| 亚洲一区二区三区四区五区黄| 欧美一级片在线| 91丨porny丨首页| 久久99国产精品尤物| 26uuu亚洲综合色| 色婷婷综合久久久中文一区二区 | 老司机精品视频线观看86| 久久精品日韩一区二区三区| 欧美日韩亚洲综合| 国产成a人无v码亚洲福利| 麻豆国产一区二区| 毛片av中文字幕一区二区| 亚洲精品免费电影| 日本一区二区电影| 欧美mv日韩mv国产网站app| 91久久线看在观草草青青| 国产成都精品91一区二区三| 久久国产成人午夜av影院| 日韩高清不卡一区| 亚洲综合免费观看高清完整版| 国产精品福利电影一区二区三区四区 | 日韩欧美视频一区| 在线免费观看不卡av| av一区二区三区在线| 97久久精品人人爽人人爽蜜臀| 国产在线观看一区二区| 经典三级在线一区| 国产成人在线免费| 一本久久a久久免费精品不卡| 色综合天天综合网国产成人综合天| 国产一区二区精品在线观看| 精品一区二区三区欧美| 蜜桃av噜噜一区二区三区小说| 麻豆91精品91久久久的内涵| 六月丁香综合在线视频| 国产精品性做久久久久久| av福利精品导航| 欧美精品v国产精品v日韩精品| 日韩欧美国产一区二区三区| 国产亚洲欧美日韩俺去了| 一区二区在线观看av| 日韩电影免费一区| 精品一二线国产| 成人国产在线观看| 日韩亚洲欧美中文三级| 亚洲天堂2016| 国产美女精品在线| 337p亚洲精品色噜噜狠狠| 亚洲国产精品v| 蜜臀av性久久久久av蜜臀妖精| 国产成人精品www牛牛影视| 色www精品视频在线观看| 精品日韩在线观看| 国产一区二区三区美女| 一本色道久久综合狠狠躁的推荐 | 精品日韩一区二区三区| 一区二区三区中文字幕电影| 成+人+亚洲+综合天堂| 久久精品综合网| 经典三级一区二区| 久久综合久久综合亚洲| 韩国女主播一区二区三区| 日韩精品中文字幕在线一区| 床上的激情91.| 亚洲www啪成人一区二区麻豆| 精品国产凹凸成av人网站| 亚洲成在人线在线播放| 日韩精品在线网站| 精品亚洲成a人在线观看| 亚洲国产精品传媒在线观看| 欧美日本国产一区| 久久99精品久久久久婷婷| 国产精品久久久久一区二区三区 | 不卡的av中国片| 亚洲sss视频在线视频| 久久天堂av综合合色蜜桃网| 色哦色哦哦色天天综合| 激情综合网最新| 亚洲成a人片综合在线| 国产女主播视频一区二区| 国产成人一区在线| 亚洲成人在线免费| 欧美国产视频在线| 日韩欧美国产成人一区二区| 成人精品视频一区二区三区| 亚洲国产美国国产综合一区二区| 欧美成人精品3d动漫h| 欧美综合亚洲图片综合区| 91麻豆福利精品推荐| 久久成人免费日本黄色| 国产精品第一页第二页第三页 | 6080国产精品一区二区| 粉嫩av一区二区三区粉嫩| 激情综合亚洲精品| 黄一区二区三区| 国产一区二区日韩精品| 一二三区精品视频| 久久亚洲捆绑美女| 欧美国产日产图区| 精品国产乱码久久久久久浪潮 | 蜜桃免费网站一区二区三区| 午夜亚洲国产au精品一区二区 | 亚洲成人午夜影院| 日韩精品久久理论片| 久久精品国产一区二区| 午夜精品123| 国产成人精品亚洲午夜麻豆|