亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm_learn_main.c

?? 這個是我最近得到的支持向量機 light 的源碼包。。。這個源碼包主要是用作文本分類
?? C
?? 第 1 頁 / 共 2 頁
字號:
    learn_parm->type=CLASSIFICATION;
  }
  else if(strcmp(type,"r")==0) {
    learn_parm->type=REGRESSION;
  }
  else if(strcmp(type,"p")==0) {
    learn_parm->type=RANKING;
  }
  else if(strcmp(type,"o")==0) {
    learn_parm->type=OPTIMIZATION;
  }
  else if(strcmp(type,"s")==0) {
    learn_parm->type=OPTIMIZATION;
    learn_parm->sharedslack=1;
  }
  else {
    printf("\nUnknown type '%s': Valid types are 'c' (classification), 'r' regession, and 'p' preference ranking.\n",type);
    wait_any_key();
    print_help();
    exit(0);
  }    
  if((learn_parm->skip_final_opt_check) 
     && (kernel_parm->kernel_type == LINEAR)) {
    printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n");
    learn_parm->skip_final_opt_check=0;
  }    
  if((learn_parm->skip_final_opt_check) 
     && (learn_parm->remove_inconsistent)) {
    printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n");
    wait_any_key();
    print_help();
    exit(0);
  }    
  if((learn_parm->svm_maxqpsize<2)) {
    printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize); 
    wait_any_key();
    print_help();
    exit(0);
  }
  if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
    printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize); 
    printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp); 
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_iter_to_shrink<1) {
    printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink);
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_c<0) {
    printf("\nThe C parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->transduction_posratio>1) {
    printf("\nThe fraction of unlabeled examples to classify as positives must\n");
    printf("be less than 1.0 !!!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_costratio<=0) {
    printf("\nThe COSTRATIO parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->epsilon_crit<=0) {
    printf("\nThe epsilon parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->rho<0) {
    printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n");
    printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n");
    printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
    printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n");
    printf("for switching to the conventional xa/estimates described in T. Joachims,\n");
    printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n");
    wait_any_key();
    print_help();
    exit(0);
  }
}

void wait_any_key()
{
  printf("\n(more)\n");
  (void)getc(stdin);
}

void print_help()
{
  printf("\nSVM-light %s: Support Vector Machine, learning module     %s\n",VERSION,VERSION_DATE);
  copyright_notice();
  printf("   usage: svm_learn [options] example_file model_file\n\n");
  printf("Arguments:\n");
  printf("         example_file-> file with training data\n");
  printf("         model_file  -> file to store learned decision rule in\n");

  printf("General options:\n");
  printf("         -?          -> this help\n");
  printf("         -v [0..3]   -> verbosity level (default 1)\n");
  printf("Learning options:\n");
  printf("         -z {c,r,p}  -> select between classification (c), regression (r),\n");
  printf("                        and preference ranking (p) (default classification)\n");
  printf("         -c float    -> C: trade-off between training error\n");
  printf("                        and margin (default [avg. x*x]^-1)\n");
  printf("         -w [0..]    -> epsilon width of tube for regression\n");
  printf("                        (default 0.1)\n");
  printf("         -j float    -> Cost: cost-factor, by which training errors on\n");
  printf("                        positive examples outweight errors on negative\n");
  printf("                        examples (default 1) (see [4])\n");
  printf("         -b [0,1]    -> use biased hyperplane (i.e. x*w+b>0) instead\n");
  printf("                        of unbiased hyperplane (i.e. x*w>0) (default 1)\n");
  printf("         -i [0,1]    -> remove inconsistent training examples\n");
  printf("                        and retrain (default 0)\n");
  printf("Performance estimation options:\n");
  printf("         -x [0,1]    -> compute leave-one-out estimates (default 0)\n");
  printf("                        (see [5])\n");
  printf("         -o ]0..2]   -> value of rho for XiAlpha-estimator and for pruning\n");
  printf("                        leave-one-out computation (default 1.0) (see [2])\n");
  printf("         -k [0..100] -> search depth for extended XiAlpha-estimator \n");
  printf("                        (default 0)\n");
  printf("Transduction options (see [3]):\n");
  printf("         -p [0..1]   -> fraction of unlabeled examples to be classified\n");
  printf("                        into the positive class (default is the ratio of\n");
  printf("                        positive and negative examples in the training data)\n");
  printf("Kernel options:\n");
  printf("         -t int      -> type of kernel function:\n");
  printf("                        0: linear (default)\n");
  printf("                        1: polynomial (s a*b+c)^d\n");
  printf("                        2: radial basis function exp(-gamma ||a-b||^2)\n");
  printf("                        3: sigmoid tanh(s a*b + c)\n");
  printf("                        4: user defined kernel from kernel.h\n");
  printf("         -d int      -> parameter d in polynomial kernel\n");
  printf("         -g float    -> parameter gamma in rbf kernel\n");
  printf("         -s float    -> parameter s in sigmoid/poly kernel\n");
  printf("         -r float    -> parameter c in sigmoid/poly kernel\n");
  printf("         -u string   -> parameter of user defined kernel\n");
  printf("Optimization options (see [1]):\n");
  printf("         -q [2..]    -> maximum size of QP-subproblems (default 10)\n");
  printf("         -n [2..q]   -> number of new variables entering the working set\n");
  printf("                        in each iteration (default n = q). Set n<q to prevent\n");
  printf("                        zig-zagging.\n");
  printf("         -m [5..]    -> size of cache for kernel evaluations in MB (default 40)\n");
  printf("                        The larger the faster...\n");
  printf("         -e float    -> eps: Allow that error for termination criterion\n");
  printf("                        [y [w*x+b] - 1] >= eps (default 0.001)\n");
  printf("         -y [0,1]    -> restart the optimization from alpha values in file\n");
  printf("                        specified by -a option. (default 0)\n");
  printf("         -h [5..]    -> number of iterations a variable needs to be\n"); 
  printf("                        optimal before considered for shrinking (default 100)\n");
  printf("         -f [0,1]    -> do final optimality check for variables removed\n");
  printf("                        by shrinking. Although this test is usually \n");
  printf("                        positive, there is no guarantee that the optimum\n");
  printf("                        was found if the test is omitted. (default 1)\n");
  printf("         -y string   -> if option is given, reads alphas from file with given\n");
  printf("                        and uses them as starting point. (default 'disabled')\n");
  printf("         -# int      -> terminate optimization, if no progress after this\n");
  printf("                        number of iterations. (default 100000)\n");
  printf("Output options:\n");
  printf("         -l string   -> file to write predicted labels of unlabeled\n");
  printf("                        examples into after transductive learning\n");
  printf("         -a string   -> write all alphas to this file after learning\n");
  printf("                        (in the same order as in the training set)\n");
  wait_any_key();
  printf("\nMore details in:\n");
  printf("[1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n");
  printf("    Kernel Methods - Support Vector Learning, B. Sch鰈kopf and C. Burges and\n");
  printf("    A. Smola (ed.), MIT Press, 1999.\n");
  printf("[2] T. Joachims, Estimating the Generalization performance of an SVM\n");
  printf("    Efficiently. International Conference on Machine Learning (ICML), 2000.\n");
  printf("[3] T. Joachims, Transductive Inference for Text Classification using Support\n");
  printf("    Vector Machines. International Conference on Machine Learning (ICML),\n");
  printf("    1999.\n");
  printf("[4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning\n");
  printf("    with a knowledge-based approach - A case study in intensive care  \n");
  printf("    monitoring. International Conference on Machine Learning (ICML), 1999.\n");
  printf("[5] T. Joachims, Learning to Classify Text Using Support Vector\n");
  printf("    Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n");
  printf("    2002.\n\n");
}


?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲香肠在线观看| 国产精品色婷婷久久58| 亚洲第一搞黄网站| 欧美日韩高清影院| 五月天欧美精品| 91精品国产综合久久福利| 日韩精品五月天| 日韩欧美一区在线观看| 激情欧美一区二区三区在线观看| 久久综合狠狠综合久久综合88| 国产福利一区二区三区| 国产精品久久久久久久第一福利| 日本精品一区二区三区高清 | 91视频精品在这里| 亚洲人精品午夜| 欧美三区在线观看| 国内精品伊人久久久久av一坑| 久久精品水蜜桃av综合天堂| av不卡在线观看| 亚洲综合免费观看高清完整版在线 | 亚洲国产毛片aaaaa无费看| 欧美三级视频在线| 久久99久久99| 亚洲日本韩国一区| 91.麻豆视频| 成人精品免费视频| 亚洲成人av电影| 亚洲精品久久嫩草网站秘色| 91精品国产一区二区三区蜜臀 | 麻豆国产精品一区二区三区| 国产日韩欧美高清在线| 欧美日韩一区二区三区四区五区| 国产又粗又猛又爽又黄91精品| 亚洲乱码国产乱码精品精可以看| 欧美精品v国产精品v日韩精品| 国精品**一区二区三区在线蜜桃| 亚洲卡通动漫在线| 欧美精品一区男女天堂| 日本道免费精品一区二区三区| 日韩成人伦理电影在线观看| 国产精品久久夜| 欧美一区二区在线看| 91免费精品国自产拍在线不卡| 青青草成人在线观看| 亚洲日本va午夜在线影院| 精品美女在线观看| 欧美日韩国产首页| 99久久国产综合精品麻豆| 久久精品国产99久久6| 最近日韩中文字幕| 国产午夜亚洲精品理论片色戒| 欧美日韩成人综合天天影院 | 亚洲国产色一区| 欧美国产精品久久| 欧美va亚洲va国产综合| 欧美色图天堂网| 成人免费的视频| 国产自产视频一区二区三区| 日韩精品午夜视频| 亚洲一区二区综合| 亚洲色图欧美偷拍| 国产日产欧美精品一区二区三区| 91麻豆精品国产91久久久| 色乱码一区二区三区88| 成人在线综合网| 国产一区二区在线免费观看| 婷婷夜色潮精品综合在线| 亚洲三级在线看| 国产精品丝袜在线| 国产精品天天看| 欧美韩国日本一区| 中文一区在线播放| 国产精品免费久久| 欧美国产精品v| 国产精品网站在线播放| 国产日本一区二区| 久久综合成人精品亚洲另类欧美| 日韩欧美色综合网站| 欧美肥妇毛茸茸| 3atv在线一区二区三区| 欧美日韩一区不卡| 欧美三级电影在线看| 欧美日韩亚洲综合一区二区三区| 色香蕉成人二区免费| 色综合天天做天天爱| 99久久er热在这里只有精品15| 成人性生交大片免费看在线播放| 国产精品123区| 丁香六月综合激情| 91丨九色丨黑人外教| 91香蕉视频在线| 欧美日韩中文字幕精品| 欧美挠脚心视频网站| 7799精品视频| 2021中文字幕一区亚洲| 国产偷v国产偷v亚洲高清| 欧美高清在线精品一区| 国产高清精品在线| 成人美女视频在线看| 一本到不卡精品视频在线观看| 日本韩国欧美在线| 欧美日韩一级片在线观看| 91精品国产综合久久精品图片 | 日本精品视频一区二区三区| 欧美在线看片a免费观看| 91精品婷婷国产综合久久| 精品日韩一区二区| 国产亚洲一区二区三区在线观看| 日本一区二区三区电影| 一区二区三区国产精华| 蜜臀av一区二区在线观看| 国产mv日韩mv欧美| 欧美三级在线视频| 久久一夜天堂av一区二区三区| 国产精品美女视频| 亚洲va韩国va欧美va精品| 精品在线免费视频| 92国产精品观看| 制服丝袜国产精品| 中文一区在线播放| 日韩电影免费在线观看网站| 国产一区二区日韩精品| 色婷婷激情久久| 精品国产污网站| 亚洲精品久久嫩草网站秘色| 紧缚捆绑精品一区二区| 成人av资源在线观看| 91麻豆精品国产自产在线观看一区| 久久免费视频一区| 亚洲成人精品一区二区| 国产精品乡下勾搭老头1| 欧美日韩精品一区二区天天拍小说| 久久综合九色综合欧美就去吻| 一区二区三区久久久| 国产精品亚洲成人| 666欧美在线视频| 亚洲女同ⅹxx女同tv| 韩国精品一区二区| 欧美午夜影院一区| 中文字幕一区二区三区四区| 久久久精品一品道一区| 欧美日韩午夜影院| 国产精品一线二线三线| 久久精品国产色蜜蜜麻豆| 色婷婷av久久久久久久| 国产喷白浆一区二区三区| 日韩电影在线观看电影| 欧美午夜精品免费| 亚洲色欲色欲www| 高清不卡在线观看av| 欧美不卡一区二区| 日韩高清一区在线| 欧美最猛性xxxxx直播| 一区二区中文字幕在线| 国产乱人伦偷精品视频不卡| 欧美男女性生活在线直播观看| 亚洲日本中文字幕区| 岛国av在线一区| 国产喂奶挤奶一区二区三区| 狠狠色丁香婷婷综合久久片| 欧美肥胖老妇做爰| 日韩成人一区二区| 91精品婷婷国产综合久久性色| 亚洲小说欧美激情另类| 91久久精品一区二区| 亚洲日本va午夜在线电影| 91在线免费视频观看| 亚洲图片激情小说| 91原创在线视频| 亚洲人成精品久久久久| 久久精品视频一区二区| 久久成人久久爱| 欧美不卡123| 国内精品久久久久影院薰衣草| 精品久久久久久久久久久久久久久久久 | 欧美日韩高清在线播放| 午夜国产精品影院在线观看| 欧美性感一区二区三区| 午夜电影一区二区三区| 宅男噜噜噜66一区二区66| 日韩国产精品久久久| 91精品国产综合久久久久久漫画| 青青草97国产精品免费观看| 欧美成人一级视频| 国产真实乱子伦精品视频| 久久久久久久电影| 成人丝袜高跟foot| 中文字幕五月欧美| 欧美日韩国产123区| 老司机精品视频一区二区三区| 精品少妇一区二区三区免费观看| 国产高清在线精品| 一区二区日韩av| 欧美一区二区三区男人的天堂| 精品一区二区三区视频| 中文一区一区三区高中清不卡| 91黄色小视频| 久久er99精品| 日韩美女精品在线| 欧美美女直播网站|