?? n2bv_32.c
字號(hào):
/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Fri Jan 27 19:49:14 EST 2006 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 32 -name n2bv_32 -with-ostride 2 -include n2b.h -store-multiple 2 *//* * This function contains 186 FP additions, 98 FP multiplications, * (or, 88 additions, 0 multiplications, 98 fused multiply/add), * 120 stack variables, and 80 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.8 2006-01-05 03:04:27 stevenj Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_notw_c.ml,v 1.16 2006-01-05 03:04:27 stevenj Exp $ */#include "n2b.h"static void n2bv_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){ DVK(KP980785280, +0.980785280403230449126182236134239036973933731); DVK(KP831469612, +0.831469612302545237078788377617905756738560812); DVK(KP198912367, +0.198912367379658006911597622644676228597850501); DVK(KP668178637, +0.668178637919298919997757686523080761552472251); DVK(KP923879532, +0.923879532511286756128183189396788286822416626); DVK(KP414213562, +0.414213562373095048801688724209698078569671875); DVK(KP707106781, +0.707106781186547524400844362104849039284835938); INT i; const R *xi; R *xo; xi = ii; xo = io; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V T31, T32, T33, T34, T35, T36, T37, T38, T39, T3a, T3b, T3c, T1h, Tr, T3d; V T3e, T3f, T3g, T1a, T1k, TI, T1b, T1L, T1P, T1I, T1G, T1O, T1Q, T1H, T1z; V T1c, TZ; { V T2x, T1T, T2K, T1W, T1p, Tb, T1A, T16, Tu, TF, T2O, T2H, T2b, T2t, TY; V T1w, TT, T1v, T20, T2C, Tj, Te, T2e, To, T2i, T23, T2D, TB, TG, Th; V T2f, Tk; { V TL, TW, TP, TQ, T2F, T27, T28, TO; { V T1, T2, T12, T13, T4, T5, T7, T8; T1 = LD(&(xi[0]), ivs, &(xi[0])); T2 = LD(&(xi[WS(is, 16)]), ivs, &(xi[0])); T12 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); T13 = LD(&(xi[WS(is, 24)]), ivs, &(xi[0])); T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); T5 = LD(&(xi[WS(is, 20)]), ivs, &(xi[0])); T7 = LD(&(xi[WS(is, 28)]), ivs, &(xi[0])); T8 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); { V TM, T25, T26, TN; { V TJ, T3, T14, T1U, T6, T1V, T9, TK, TU, TV, T1R, T1S, Ta, T15; TJ = LD(&(xi[WS(is, 31)]), ivs, &(xi[WS(is, 1)])); T1R = VADD(T1, T2); T3 = VSUB(T1, T2); T1S = VADD(T12, T13); T14 = VSUB(T12, T13); T1U = VADD(T4, T5); T6 = VSUB(T4, T5); T1V = VADD(T7, T8); T9 = VSUB(T7, T8); TK = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); TU = LD(&(xi[WS(is, 23)]), ivs, &(xi[WS(is, 1)])); T2x = VSUB(T1R, T1S); T1T = VADD(T1R, T1S); TV = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); TM = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); T2K = VSUB(T1U, T1V); T1W = VADD(T1U, T1V); Ta = VADD(T6, T9); T15 = VSUB(T6, T9); T25 = VADD(TJ, TK); TL = VSUB(TJ, TK); T26 = VADD(TV, TU); TW = VSUB(TU, TV); TN = LD(&(xi[WS(is, 19)]), ivs, &(xi[WS(is, 1)])); TP = LD(&(xi[WS(is, 27)]), ivs, &(xi[WS(is, 1)])); T1p = VFNMS(LDK(KP707106781), Ta, T3); Tb = VFMA(LDK(KP707106781), Ta, T3); T1A = VFNMS(LDK(KP707106781), T15, T14); T16 = VFMA(LDK(KP707106781), T15, T14); TQ = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); } T2F = VSUB(T25, T26); T27 = VADD(T25, T26); T28 = VADD(TM, TN); TO = VSUB(TM, TN); } } { V Ty, T21, Tx, Tz, T1Y, T1Z; { V Ts, Tt, TD, T29, TR, TE, Tv, Tw; Ts = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); Tt = LD(&(xi[WS(is, 17)]), ivs, &(xi[WS(is, 1)])); TD = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); T29 = VADD(TP, TQ); TR = VSUB(TP, TQ); TE = LD(&(xi[WS(is, 25)]), ivs, &(xi[WS(is, 1)])); Tv = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); Tw = LD(&(xi[WS(is, 21)]), ivs, &(xi[WS(is, 1)])); Ty = LD(&(xi[WS(is, 29)]), ivs, &(xi[WS(is, 1)])); T1Y = VADD(Ts, Tt); Tu = VSUB(Ts, Tt); { V T2G, T2a, TX, TS; T2G = VSUB(T29, T28); T2a = VADD(T28, T29); TX = VSUB(TR, TO); TS = VADD(TO, TR); T1Z = VADD(TD, TE); TF = VSUB(TD, TE); T21 = VADD(Tv, Tw); Tx = VSUB(Tv, Tw); T2O = VFMA(LDK(KP414213562), T2F, T2G); T2H = VFNMS(LDK(KP414213562), T2G, T2F); T2b = VSUB(T27, T2a); T2t = VADD(T27, T2a); TY = VFMA(LDK(KP707106781), TX, TW); T1w = VFNMS(LDK(KP707106781), TX, TW); TT = VFMA(LDK(KP707106781), TS, TL); T1v = VFNMS(LDK(KP707106781), TS, TL); Tz = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); } } T20 = VADD(T1Y, T1Z); T2C = VSUB(T1Y, T1Z); { V Tc, Td, Tm, Tn; Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); Td = LD(&(xi[WS(is, 18)]), ivs, &(xi[0])); Tm = LD(&(xi[WS(is, 22)]), ivs, &(xi[0])); Tn = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); { V Tf, TA, T22, Tg; Tf = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); TA = VSUB(Ty, Tz); T22 = VADD(Ty, Tz); Tg = LD(&(xi[WS(is, 26)]), ivs, &(xi[0])); Tj = LD(&(xi[WS(is, 30)]), ivs, &(xi[0])); Te = VSUB(Tc, Td); T2e = VADD(Tc, Td); To = VSUB(Tm, Tn); T2i = VADD(Tn, Tm); T23 = VADD(T21, T22); T2D = VSUB(T21, T22); TB = VADD(Tx, TA); TG = VSUB(Tx, TA); Th = VSUB(Tf, Tg); T2f = VADD(Tf, Tg); Tk = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); } } } } { V T1t, TH, T1s, TC, T2P, T2U, T2n, T2d, T2w, T2u, T1q, T19, T1B, Tq, T2W; V T2M, T2B, T2T, T2v, T2r, T2o, T2m, T2X, T2I; { V T1X, T2p, T2E, T2N, T2s, T2y, T2g, T17, Ti, T2h, Tl, T2c, T2l, T24; T1X = VSUB(T1T, T1W); T2p = VADD(T1T, T1W); T2E = VFNMS(LDK(KP414213562), T2D, T2C); T2N = VFMA(LDK(KP414213562), T2C, T2D); T2s = VADD(T20, T23); T24 = VSUB(T20, T23); T1t = VFNMS(LDK(KP707106781), TG, TF); TH = VFMA(LDK(KP707106781), TG, TF); T1s = VFNMS(LDK(KP707106781), TB, Tu); TC = VFMA(LDK(KP707106781), TB, Tu); T2y = VSUB(T2e, T2f); T2g = VADD(T2e, T2f); T17 = VFMA(LDK(KP414213562), Te, Th); Ti = VFNMS(LDK(KP414213562), Th, Te); T2h = VADD(Tj, Tk); Tl = VSUB(Tj, Tk); T2c = VADD(T24, T2b); T2l = VSUB(T24, T2b); { V T2L, T2A, T2q, T2k; T2P = VSUB(T2N, T2O); T2U = VADD(T2N, T2O); { V T2z, T2j, T18, Tp; T2z = VSUB(T2h, T2i); T2j = VADD(T2h, T2i); T18 = VFMA(LDK(KP414213562), Tl, To); Tp = VFNMS(LDK(KP414213562), To, Tl); T2n = VFMA(LDK(KP707106781), T2c, T1X); T2d = VFNMS(LDK(KP707106781), T2c, T1X); T2w = VADD(T2s, T2t); T2u = VSUB(T2s, T2t); T2L = VSUB(T2y, T2z); T2A = VADD(T2y, T2z); T2q = VADD(T2g, T2j); T2k = VSUB(T2g, T2j); T1q = VADD(T17, T18); T19 = VSUB(T17, T18); T1B = VSUB(Ti, Tp); Tq = VADD(Ti, Tp); } T2W = VFNMS(LDK(KP707106781), T2L, T2K); T2M = VFMA(LDK(KP707106781), T2L, T2K); T2B = VFMA(LDK(KP707106781), T2A, T2x); T2T = VFNMS(LDK(KP707106781), T2A, T2x); T2v = VADD(T2p, T2q); T2r = VSUB(T2p, T2q); T2o = VFMA(LDK(KP707106781), T2l, T2k); T2m = VFNMS(LDK(KP707106781), T2l, T2k); T2X = VSUB(T2E, T2H); T2I = VADD(T2E, T2H); } } { V T2V, T2Z, T2Y, T30, T2R, T2J; T2V = VFNMS(LDK(KP923879532), T2U, T2T); T2Z = VFMA(LDK(KP923879532), T2U, T2T); T31 = VSUB(T2v, T2w); STM2(&(xo[32]), T31, ovs, &(xo[0])); T32 = VADD(T2v, T2w); STM2(&(xo[0]), T32, ovs, &(xo[0])); T33 = VFMAI(T2u, T2r); STM2(&(xo[16]), T33, ovs, &(xo[0])); T34 = VFNMSI(T2u, T2r); STM2(&(xo[48]), T34, ovs, &(xo[0])); T35 = VFMAI(T2o, T2n); STM2(&(xo[8]), T35, ovs, &(xo[0])); T36 = VFNMSI(T2o, T2n); STM2(&(xo[56]), T36, ovs, &(xo[0])); T37 = VFMAI(T2m, T2d); STM2(&(xo[40]), T37, ovs, &(xo[0])); T38 = VFNMSI(T2m, T2d); STM2(&(xo[24]), T38, ovs, &(xo[0])); T2Y = VFMA(LDK(KP923879532), T2X, T2W); T30 = VFNMS(LDK(KP923879532), T2X, T2W); T2R = VFMA(LDK(KP923879532), T2I, T2B); T2J = VFNMS(LDK(KP923879532), T2I, T2B); { V T1J, T1r, T1C, T1M, T2S, T2Q, T1u, T1D, T1E, T1x; T1J = VFNMS(LDK(KP923879532), T1q, T1p); T1r = VFMA(LDK(KP923879532), T1q, T1p); T1C = VFNMS(LDK(KP923879532), T1B, T1A); T1M = VFMA(LDK(KP923879532), T1B, T1A); T39 = VFNMSI(T30, T2Z); STM2(&(xo[12]), T39, ovs, &(xo[0])); T3a = VFMAI(T30, T2Z); STM2(&(xo[52]), T3a, ovs, &(xo[0])); T3b = VFNMSI(T2Y, T2V); STM2(&(xo[44]), T3b, ovs, &(xo[0])); T3c = VFMAI(T2Y, T2V); STM2(&(xo[20]), T3c, ovs, &(xo[0])); T2S = VFMA(LDK(KP923879532), T2P, T2M); T2Q = VFNMS(LDK(KP923879532), T2P, T2M); T1u = VFMA(LDK(KP668178637), T1t, T1s); T1D = VFNMS(LDK(KP668178637), T1s, T1t); T1E = VFNMS(LDK(KP668178637), T1v, T1w); T1x = VFMA(LDK(KP668178637), T1w, T1v); { V T1K, T1F, T1N, T1y; T1h = VFNMS(LDK(KP923879532), Tq, Tb); Tr = VFMA(LDK(KP923879532), Tq, Tb); T3d = VFNMSI(T2S, T2R); STM2(&(xo[60]), T3d, ovs, &(xo[0])); T3e = VFMAI(T2S, T2R); STM2(&(xo[4]), T3e, ovs, &(xo[0])); T3f = VFMAI(T2Q, T2J); STM2(&(xo[36]), T3f, ovs, &(xo[0])); T3g = VFNMSI(T2Q, T2J); STM2(&(xo[28]), T3g, ovs, &(xo[0])); T1K = VADD(T1D, T1E); T1F = VSUB(T1D, T1E); T1N = VSUB(T1u, T1x); T1y = VADD(T1u, T1x); T1a = VFMA(LDK(KP923879532), T19, T16); T1k = VFNMS(LDK(KP923879532), T19, T16); TI = VFNMS(LDK(KP198912367), TH, TC); T1b = VFMA(LDK(KP198912367), TC, TH); T1L = VFMA(LDK(KP831469612), T1K, T1J); T1P = VFNMS(LDK(KP831469612), T1K, T1J); T1I = VFMA(LDK(KP831469612), T1F, T1C); T1G = VFNMS(LDK(KP831469612), T1F, T1C); T1O = VFNMS(LDK(KP831469612), T1N, T1M); T1Q = VFMA(LDK(KP831469612), T1N, T1M); T1H = VFMA(LDK(KP831469612), T1y, T1r); T1z = VFNMS(LDK(KP831469612), T1y, T1r); T1c = VFMA(LDK(KP198912367), TT, TY); TZ = VFNMS(LDK(KP198912367), TY, TT); } } } } } { V T1d, T1i, T10, T1l; { V T3h, T3i, T3j, T3k; T3h = VFMAI(T1O, T1L); STM2(&(xo[42]), T3h, ovs, &(xo[2])); STN2(&(xo[40]), T37, T3h, ovs); T3i = VFNMSI(T1O, T1L); STM2(&(xo[22]), T3i, ovs, &(xo[2])); STN2(&(xo[20]), T3c, T3i, ovs); T3j = VFNMSI(T1Q, T1P); STM2(&(xo[54]), T3j, ovs, &(xo[2])); STN2(&(xo[52]), T3a, T3j, ovs); T3k = VFMAI(T1Q, T1P); STM2(&(xo[10]), T3k, ovs, &(xo[2])); STN2(&(xo[8]), T35, T3k, ovs); { V T3l, T3m, T3n, T3o; T3l = VFMAI(T1I, T1H); STM2(&(xo[58]), T3l, ovs, &(xo[2])); STN2(&(xo[56]), T36, T3l, ovs); T3m = VFNMSI(T1I, T1H); STM2(&(xo[6]), T3m, ovs, &(xo[2])); STN2(&(xo[4]), T3e, T3m, ovs); T3n = VFMAI(T1G, T1z); STM2(&(xo[26]), T3n, ovs, &(xo[2])); STN2(&(xo[24]), T38, T3n, ovs); T3o = VFNMSI(T1G, T1z); STM2(&(xo[38]), T3o, ovs, &(xo[2])); STN2(&(xo[36]), T3f, T3o, ovs); T1d = VSUB(T1b, T1c); T1i = VADD(T1b, T1c); T10 = VADD(TI, TZ); T1l = VSUB(TI, TZ); } } { V T1n, T1j, T1e, T1g, T1o, T1m, T11, T1f; T1n = VFMA(LDK(KP980785280), T1i, T1h); T1j = VFNMS(LDK(KP980785280), T1i, T1h); T1e = VFNMS(LDK(KP980785280), T1d, T1a); T1g = VFMA(LDK(KP980785280), T1d, T1a); T1o = VFNMS(LDK(KP980785280), T1l, T1k); T1m = VFMA(LDK(KP980785280), T1l, T1k); T11 = VFNMS(LDK(KP980785280), T10, Tr); T1f = VFMA(LDK(KP980785280), T10, Tr); { V T3p, T3q, T3r, T3s; T3p = VFNMSI(T1m, T1j); STM2(&(xo[46]), T3p, ovs, &(xo[2])); STN2(&(xo[44]), T3b, T3p, ovs); T3q = VFMAI(T1m, T1j); STM2(&(xo[18]), T3q, ovs, &(xo[2])); STN2(&(xo[16]), T33, T3q, ovs); T3r = VFMAI(T1o, T1n); STM2(&(xo[50]), T3r, ovs, &(xo[2])); STN2(&(xo[48]), T34, T3r, ovs); T3s = VFNMSI(T1o, T1n); STM2(&(xo[14]), T3s, ovs, &(xo[2])); STN2(&(xo[12]), T39, T3s, ovs); { V T3t, T3u, T3v, T3w; T3t = VFMAI(T1g, T1f); STM2(&(xo[2]), T3t, ovs, &(xo[2])); STN2(&(xo[0]), T32, T3t, ovs); T3u = VFNMSI(T1g, T1f); STM2(&(xo[62]), T3u, ovs, &(xo[2])); STN2(&(xo[60]), T3d, T3u, ovs); T3v = VFMAI(T1e, T11); STM2(&(xo[34]), T3v, ovs, &(xo[2])); STN2(&(xo[32]), T31, T3v, ovs); T3w = VFNMSI(T1e, T11); STM2(&(xo[30]), T3w, ovs, &(xo[2])); STN2(&(xo[28]), T3g, T3w, ovs); } } } } }}static const kdft_desc desc = { 32, "n2bv_32", {88, 0, 98, 0}, &GENUS, 0, 2, 0, 0 };void X(codelet_n2bv_32) (planner *p) { X(kdft_register) (p, n2bv_32, &desc);}#else /* HAVE_FMA *//* Generated by: ../../../genfft/gen_notw_c -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 32 -name n2bv_32 -with-ostride 2 -include n2b.h -store-multiple 2 *//* * This function contains 186 FP additions, 42 FP multiplications, * (or, 170 additions, 26 multiplications, 16 fused multiply/add), * 72 stack variables, and 80 memory accesses
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -