?? bpcluster.asv
字號:
%輸入色譜數(shù)據(jù)P和對應(yīng)的目標(biāo)期望值T
b=[ 0.5709 0.0439 0.4996 0.2377 2.3461 0.0423
1.0496 0.3980 1.6184 0.1573 0.9451 1.5614
0.6880 0.2292 1.1794 1.1895 0.5214 0.2384
0.6540 0.2017 1.6566 0.5587 0.4112 1.2298
2.0277 0.3553 1.8477 1.1107 0.1547 0.2531
1.5818 0.4356 1.6425 1.2554 0.2268 0.5861
0.5384 0.4898 0.4886 0.4446 0.1228 0.8452
0.1734 0.1885 0.0966 0.1141 0.0819 0.2619
0.1394 0.3331 0.0812 0.0585 0.0935 0.3528
0.3665 0.1494 0.3549 0.2927 0.1035 0.1513
0.1424 0.2386 0.1759 0.1476 0.4943 0.6602
0.5203 0.3955 0.5274 0.2994 0.2422 0.4497
0.3003 1.2505 0.6264 0.6104 0.0731 0.9278
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.1268 0.1269 1.3431 0.6588 0.1034 0.3995];
P=b(:,[1,2,3,5]);
T=[1 0 1 2];
x=[1 1 1 1];
%繪出訓(xùn)練樣品數(shù)據(jù)
figure;
plot(T,x,'r*')
%設(shè)置網(wǎng)絡(luò)隱單元的神經(jīng)元數(shù)(可
n=6;
%建立BP網(wǎng)絡(luò)
net=newff(minmax(P),[n,1],{'tansig','logsig'},'trainlm');
%訓(xùn)練建立的網(wǎng)絡(luò)
net.trainParam.show=50;
net.trainParam.lr=0.05;
net.trainParam.mc=0.9;
net.trainParam.epochs=2000;
net.trainParam.goal=0.001;
%調(diào)用TRAINGDM算法訓(xùn)練BP網(wǎng)絡(luò)
net=train(net,P,T);
%對BP網(wǎng)絡(luò)進(jìn)行仿真,并計算誤差
A=sim(net,P)
E=A-T;
M=sse(E)
N=mse(E)
%對建立的網(wǎng)絡(luò)進(jìn)行仿真,對未知的樣品進(jìn)行分類
p1=b(:,[4,6]);
y=sim(net,p1)
%繪出仿真樣品數(shù)據(jù)
z=[1 1];
figure;
plot(T,x,'r*')
hold on
plot(y,z,'bp')
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -