?? rms.m
字號:
%# function [RMSE,PMSEtest,PRESS,SE,BIAS,SE2] = rms(y,yhat)
%#
%# AIM: Calculates Root Mean Squared Error (RMSE), PRedicted REsidual Sum
%# of Squared errors (PRESS), Standard Error (SE) and bias for a vector
%# of predicted y-values.
%#
%# INPUT: y : n-element vector of experimental responses (row- or column-vector)
%# yhat : n-element vector of estimated responses (same dimentions of y)
%#
%# OUTPUT: RMSE : Root Mean Squared Error
%# PRESS : PRedicted REsidual Sum of Squared error
%# SE : Standard Error
%# BIAS : bias
%#
%# AUTHOR: Frederic Despagne
%# Copyright(c) 1997 for ChemoAC
%# Dienst FABI, Vrije Universiteit Brussel
%# Laarbeeklaan 103, 1090 Jette
%#
%# VERSION: 1.1 (28/02/1998)
%#
%# TEST: Roy De Maesschalck
function [RMSE,RMStest,PRESS,SE,BIAS,SE2] = rms(y,yhat);
n = length(y); % Number of samples
resid = yhat-y; % Vector of residuals
SE = sqrt(cov(resid)); % SE
BIAS = (sum(resid))/n; % Bias
PRESS = sum((resid).^2); % PRESS
RMSE = sqrt(PRESS/n); % RMSE
RMStest=sqrt(resid'*resid/n);
SE2= sqrt(sum((yhat-y-BIAS).^2)/(n-1));
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -