?? scg.m
字號:
function [x, options, flog, pointlog, scalelog] = scg(f, x, options, gradf, varargin)%SCG Scaled conjugate gradient optimization.%% Description% [X, OPTIONS] = SCG(F, X, OPTIONS, GRADF) uses a scaled conjugate% gradients algorithm to find a local minimum of the function F(X)% whose gradient is given by GRADF(X). Here X is a row vector and F% returns a scalar value. The point at which F has a local minimum is% returned as X. The function value at that point is returned in% OPTIONS(8).%% [X, OPTIONS, FLOG, POINTLOG, SCALELOG] = SCG(F, X, OPTIONS, GRADF)% also returns (optionally) a log of the function values after each% cycle in FLOG, a log of the points visited in POINTLOG, and a log of% the scale values in the algorithm in SCALELOG.%% SCG(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional arguments to% be passed to F() and GRADF(). The optional parameters have the% following interpretations.%% OPTIONS(1) is set to 1 to display error values; also logs error% values in the return argument ERRLOG, and the points visited in the% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only% warning messages are displayed. If OPTIONS(1) is -1, then nothing is% displayed.%% OPTIONS(2) is a measure of the absolute precision required for the% value of X at the solution. If the absolute difference between the% values of X between two successive steps is less than OPTIONS(2),% then this condition is satisfied.%% OPTIONS(3) is a measure of the precision required of the objective% function at the solution. If the absolute difference between the% objective function values between two successive steps is less than% OPTIONS(3), then this condition is satisfied. Both this and the% previous condition must be satisfied for termination.%% OPTIONS(9) is set to 1 to check the user defined gradient function.%% OPTIONS(10) returns the total number of function evaluations% (including those in any line searches).%% OPTIONS(11) returns the total number of gradient evaluations.%% OPTIONS(14) is the maximum number of iterations; default 100.%% See also% CONJGRAD, QUASINEW%% Copyright (c) Ian T Nabney (1996-2001)% Set up the options.if length(options) < 18 error('Options vector too short')endif(options(14)) niters = options(14);else niters = 100;enddisplay = options(1);gradcheck = options(9);% Set up strings for evaluating function and gradientf = fcnchk(f, length(varargin));gradf = fcnchk(gradf, length(varargin));nparams = length(x);% Check gradientsif (gradcheck) feval('gradchek', x, f, gradf, varargin{:});endsigma0 = 1.0e-4;fold = feval(f, x, varargin{:}); % Initial function value.fnow = fold;options(10) = options(10) + 1; % Increment function evaluation counter.gradnew = feval(gradf, x, varargin{:}); % Initial gradient.gradold = gradnew;options(11) = options(11) + 1; % Increment gradient evaluation counter.d = -gradnew; % Initial search direction.success = 1; % Force calculation of directional derivs.nsuccess = 0; % nsuccess counts number of successes.beta = 1.0; % Initial scale parameter.betamin = 1.0e-15; % Lower bound on scale.betamax = 1.0e100; % Upper bound on scale.j = 1; % j counts number of iterations.if nargout >= 3 flog(j, :) = fold; if nargout == 4 pointlog(j, :) = x; endend% Main optimization loop.while (j <= niters) % Calculate first and second directional derivatives. if (success == 1) mu = d*gradnew'; if (mu >= 0) d = - gradnew; mu = d*gradnew'; end kappa = d*d'; if kappa < eps options(8) = fnow; return end sigma = sigma0/sqrt(kappa); xplus = x + sigma*d; gplus = feval(gradf, xplus, varargin{:}); options(11) = options(11) + 1; theta = (d*(gplus' - gradnew'))/sigma; end % Increase effective curvature and evaluate step size alpha. delta = theta + beta*kappa; if (delta <= 0) delta = beta*kappa; beta = beta - theta/kappa; end alpha = - mu/delta; % Calculate the comparison ratio. xnew = x + alpha*d; fnew = feval(f, xnew, varargin{:}); options(10) = options(10) + 1; Delta = 2*(fnew - fold)/(alpha*mu); if (Delta >= 0) success = 1; nsuccess = nsuccess + 1; x = xnew; fnow = fnew; else success = 0; fnow = fold; end if nargout >= 3 % Store relevant variables flog(j) = fnow; % Current function value if nargout >= 4 pointlog(j,:) = x; % Current position if nargout >= 5 scalelog(j) = beta; % Current scale parameter end end end if display > 0 fprintf(1, 'Cycle %4d Error %11.6f Scale %e\n', j, fnow, beta); end if (success == 1) % Test for termination if (max(abs(alpha*d)) < options(2) & max(abs(fnew-fold)) < options(3)) options(8) = fnew; return; else % Update variables for new position fold = fnew; gradold = gradnew; gradnew = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; % If the gradient is zero then we are done. if (gradnew*gradnew' == 0) options(8) = fnew; return; end end end % Adjust beta according to comparison ratio. if (Delta < 0.25) beta = min(4.0*beta, betamax); end if (Delta > 0.75) beta = max(0.5*beta, betamin); end % Update search direction using Polak-Ribiere formula, or re-start % in direction of negative gradient after nparams steps. if (nsuccess == nparams) d = -gradnew; nsuccess = 0; else if (success == 1) gamma = (gradold - gradnew)*gradnew'/(mu); d = gamma*d - gradnew; end end j = j + 1;end% If we get here, then we haven't terminated in the given number of % iterations.options(8) = fold;if (options(1) >= 0) disp('Warning: Maximum number of iterations has been exceeded');end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -