亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo3.m

?? 武漢理工大學的程磊上傳非常有用的MATLAB時頻分析工具箱
?? M
字號:
%TFDEMO3 Demonstration on linear time-frequency representations.  	 %	Time-Frequency Toolbox demonstration.%%	See also TFDEMO.%	O. Lemoine - May 1996. %	Copyright (c) CNRS.clc; zoom on; clf; echo on;% The Short-Time Fourier Transform%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% In order to introduce time-dependency in the Fourier transform, a simple% and intuitive solution consists in pre-windowing the signal x(u) around a% particular time t, calculating its Fourier transform, and doing that for% each time instant t. The resulting transform is called the Short-Time % Fourier Transform (STFT).%% Let us have a look at the result obtained by applying the STFT on a% speech signal. The signal we consider contains the word 'GABOR' recorded % on 338 points with a sampling frequency of 1 kHz (with respect to the % Shannon criterion).load gabor; time=0:337; subplot(211); plot(time,gabor); xlabel('Time [ms]'); grid% Now let us have a look at the Fourier transform of it :dsp=fftshift(abs(fft(gabor)).^2); subplot(212); freq=(-169:168)/338*1000; plot(freq,dsp); xlabel('Frequency [Hz]'); grid% We can not say from this representation what part of the word is% responsible for that peak around 140 Hz. %% Press any key to continue... pause; clc; % Now if we look at the squared modulus of the STFT of this signal, % using a hamming analysis window of 85 points, we can see some interesting% features (the time-frequency matrix is loaded from the MAT-file because % it takes a long time to be calculated ; we represent only the frequency % domain where the signal is present) :		clf; contour(time,(0:127)/256*1000,log10(tfr)); gridxlabel('Time [ms]'); ylabel('Frequency [Hz]'); title('Squared modulus of the STFT of the word GABOR');% The first pattern in the time-frequency plane, located between 30ms and% 60ms, and centered around 150Hz, corresponds to the first syllable% 'GA'. The second pattern, located between 150ms and 250ms, corresponds to% the last syllable 'BOR', and we can see that its mean frequency is% decreasing from 140Hz to 110Hz with time. Harmonics corresponding to these% two fondamental signals are also present at higher frequencies, but with a% lower amplitude.%% Press any key to continue... pause; clc; % To illustrate the tradeoff which exists for the STFT between time and % frequency resolutions, whatever is the short time analysis window h, we % consider two extreme cases : % - the first one corresponds to a perfect time resolution : the analysis % window h(t) is chosen as a Dirac impulse :sig=amgauss(128).*fmlin(128); h=1;tfrstft(sig,1:128,128,h);% The signal is perfectly localized in time (a section for a given % frequency of the squared modulus of the STFT corresponds exactly to the % squared modulus of the signal), but the frequency resolution is null.     %% Press any key to continue... pause; % - the second is that of perfect frequency resolution , obtained with a% constant window :h=ones(127,1);tfrstft(sig,1:128,128,h);% Here the STFT reduces to the Fourier transform (except on the sides, % because of the finite length of h), and does not provides any time % resolution.  %    % Press any key to continue... pause; clc% To illustrate the influence of the shape and length of the analysis% window h, we consider two transient signals having the same gaussian% amplitude and constant frequency, with different arrival times :sig=atoms(128,[45,.25,32,1;85,.25,32,1]);% Here is the result obtained with a Hamming analysis window of 65 % points :h=window(65,'hamming');tfrstft(sig,1:128,128,h);% The frequency-resolution is very good, but it is almost impossible to% discriminate the two components in time. %    % Press any key to continue... pause; clc% If we now consider a short Hamming window of 17 points,h=window(17,'hamming');tfrstft(sig,1:128,128,h);% the frequency resolution is poorer, but the time-resolution is % sufficiently good to distinguish the two components. %    % Press any key to continue... pause; clc; clf% The Gabor Representation %~~~~~~~~~~~~~~~~~~~~~~~~~~% The reconstruction (synthesis) formula of the STFT given in the % discrete case defines the Gabor representation. Let us consider the % Gabor coefficients of a linear chirp of N1=256 points at the critical % sampling case, and for a gaussian window of Ng=33 points :N1=256; Ng=33; Q=1; % degree of oversampling.sig=fmlin(N1); g=window(Ng,'gauss'); g=g/norm(g);[tfr,dgr,h]=tfrgabor(sig,16,Q,g);% (tfrgabor generates as first output the squared modulus of the Gabor% representation, as second output the complex Gabor representation, and % as third output the biorthonormal window). When we look at the% biorthonormal window h,plot(h); axis([1 256 -0.3 0.55]); grid; title('Biorthonormal window'); % we can see how "bristling" this function is. %    % Press any key to continue... pause; clc% The corresponding Gabor decomposition contains all the information about % sig, but is not easy to interpret :t=1:16; f=linspace(0,0.5,8); imagesc(t,f,tfr(1:8,:));  gridxlabel('Time'); ylabel('Normalized frequency'); axis('xy'); title('Squared modulus of the Gabor coefficients');% Press any key to continue... pause;% If we now consider a degree of oversampling of Q=4 (there are four times% more Gabor coefficients than signal samples), the biorthogonal function is% smoother (the bigger Q, the closer h from g),Q=4; [tfr,dgr,h]=tfrgabor(sig,32,Q,g);plot(h); title('Biorthonormal window'); axis([1 256 -0.01 0.09]); grid; % press any key to continue... pause; % and the Gabor representation is much more readable :t=1:32; f=linspace(0,0.5,16); imagesc(t,f,tfr(1:16,:)); axis('xy'); xlabel('Time'); ylabel('Normalized frequency');  gridtitle('Squared modulus of the Gabor coefficients');% Press any key to continue... pause; clc; % From atomic decompositions to energy distributions%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% The spectrogram%"""""""""""""""""% If we consider the squared modulus of the STFT, we obtain a spectral% energy density of the locally windowed signal x(u) h*(u-t), which % defines the spectrogram.% To illustrate the resolution tradeoff of the spectrogram and its% interference structure, we consider a two-component signal composed of % two parallel chirps :sig=fmlin(128,0,0.4)+fmlin(128,0.1,0.5);h1=window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);h2=window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);print -deps EPS/At4fig2% In these two cases, the signals sig1 and sig2 are not sufficiently % distant to have distinct terms in the time-frequency plane, whatever the % window length is. Consequently, interference terms are present, and % disturb the readability of the time-frequency representation. %% Press any key to continue... pause; clc; % If we consider more distant components,sig=fmlin(128,0,0.3)+fmlin(128,0.2,0.5);h1=window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);h2=window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);% the two auto-spectrograms do not overlap and no interference term% appear. We can also see the effect of a short window (h1) and a long% window (h2) on the time-frequency resolution. In the present case, the % long window h2 is preferable since as the frequency progression is not% very fast, the quasi-stationary assumption will be correct over h2 (so % time resolution is not as important as frequency resolution in this case) % and the frequency resolution will be quite good ; whereas if the window % is short (h1), the time resolution will be good, which is not very useful, % and the frequency resolution will be poor.%% Press any key to continue... pause; clc; close;% The scalogram%"""""""""""""""% A similar distribution to the spectrogram can be defined in the wavelet% case. The squared modulus of the continuous wavelet transform also % defines an energy distribution which is known as the scalogram.% As for the wavelet transform, time and frequency resolutions of the% scalogram are related via the Heisenberg-Gabor principle : time and% frequency resolutions depend on the considered frequency. To illustrate% this point, we represent the scalograms of two different signals. The% M-file tfrscalo.m generates this representation. The chosen wavelet is a% Morlet wavelet of 12 points. The first signal is a Dirac pulse at time% t0=64 :sig1=anapulse(128);tfrscalo(sig1,1:128,6,0.05,0.45,64);% This figure shows that the influence of the signal's behavior around % t=t0 is limited to a cone in the time-scale plane (which is more visible % if you choose the logarithmic scale is the menu) : it is "very" localized % around t0 for small scales (large frequencies), and less and less % localized as the scale increases (as the frequency decreases).%% Press any key to continue... pause; clc; % The second signal is the sum of two sinusoids of different frequencies :sig2=fmconst(128,.15)+fmconst(128,.35);tfrscalo(sig2,1:128,6,0.05,0.45,128); % Here again, we notice that the frequency resolution is clearly a function% of the frequency : it increases with nu.%% Press any key to end this demonstrationpause;echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
无码av免费一区二区三区试看| 91在线免费播放| 国产成人精品在线看| 日本乱人伦aⅴ精品| 2014亚洲片线观看视频免费| 一二三四区精品视频| 成人理论电影网| 日韩女优av电影| 亚洲成人av免费| 99国产一区二区三精品乱码| 久久人人爽人人爽| 秋霞av亚洲一区二区三| 在线观看视频一区二区欧美日韩| 国产精品系列在线| 国内一区二区在线| 日韩午夜激情免费电影| 亚洲一区二区在线视频| 亚洲成人av免费| 亚洲成人自拍偷拍| 国产99精品视频| 精品国产乱码久久久久久蜜臀| 国产精品素人一区二区| 国产一区二区不卡老阿姨| 欧美日韩专区在线| 亚洲成人精品一区| 欧美在线观看一区| 洋洋成人永久网站入口| 色婷婷综合久久久久中文一区二区| 欧美激情一区在线| 成人丝袜视频网| 中文字幕精品在线不卡| 成人免费看视频| 中国色在线观看另类| 成人福利视频网站| 成人欧美一区二区三区视频网页| 成人精品视频一区二区三区尤物| 国产欧美一区二区精品性色| 国产ts人妖一区二区| 国产欧美日韩激情| 99热在这里有精品免费| 自拍偷拍国产亚洲| 欧美色视频在线| 国产乱子伦视频一区二区三区| 久久伊人蜜桃av一区二区| 国产乱码字幕精品高清av | 国产一区二区在线免费观看| 欧美一区二区三区在线视频 | 亚洲美女淫视频| 色哟哟国产精品| 午夜激情综合网| 日韩欧美专区在线| 成人精品视频一区| 亚洲国产综合在线| 欧美精品一区二区三区蜜桃| 风间由美一区二区三区在线观看| 亚洲人成在线观看一区二区| 在线日韩一区二区| 久久精工是国产品牌吗| 国产精品色婷婷| 一本久道久久综合中文字幕| 欧美bbbbb| 国产精品色噜噜| 91精品午夜视频| 成人永久aaa| 国产成人自拍在线| 亚洲欧洲精品天堂一级| 色噜噜狠狠色综合中国 | 国产精品素人视频| 在线视频欧美区| 精彩视频一区二区三区| 国产精品家庭影院| 91精品麻豆日日躁夜夜躁| 国产乱国产乱300精品| 亚洲亚洲人成综合网络| 久久九九久久九九| 6080亚洲精品一区二区| 成人午夜短视频| 久久9热精品视频| 亚洲一区二区欧美日韩 | 91精品国产aⅴ一区二区| 粉嫩一区二区三区性色av| 天堂久久一区二区三区| 国产精品美女视频| 亚洲精品一区二区三区四区高清| 在线精品视频免费播放| 成人黄色片在线观看| 久久99久久久久久久久久久| 亚洲精品va在线观看| 国产亚洲一区字幕| 日韩精品一区二区三区在线观看 | 夫妻av一区二区| 亚洲私人黄色宅男| 亚洲精品一区二区三区在线观看 | 欧美精品123区| 国产精品18久久久久久久网站| 午夜欧美大尺度福利影院在线看| 国产精品乱人伦| 久久久国际精品| 2024国产精品| 欧美xxxxxxxx| 欧美xxx久久| 日韩欧美高清一区| 日韩欧美一级精品久久| 91精品久久久久久蜜臀| 欧美片在线播放| 欧美日韩久久一区| 欧美日韩一级大片网址| 欧美三区在线视频| 欧美色区777第一页| 欧美日韩视频不卡| 欧美撒尿777hd撒尿| 欧美日韩久久久久久| 欧美日韩黄色一区二区| 精品va天堂亚洲国产| 国产综合色在线| 美女视频第一区二区三区免费观看网站| 一区二区在线电影| 一区二区三区波多野结衣在线观看| 中文字幕一区二区在线观看| 国产精品污污网站在线观看| 欧美激情一区二区| 亚洲男同性视频| 亚洲一区二区欧美日韩| 亚洲成av人影院| 美女视频免费一区| 国产一区二区免费看| 国产91高潮流白浆在线麻豆 | 亚洲综合激情小说| 国产精品综合网| 高清在线不卡av| 91亚洲资源网| 欧美日韩高清一区二区不卡| 制服丝袜激情欧洲亚洲| 精品久久久久一区| 国产精品久久777777| 亚洲已满18点击进入久久| 视频在线观看91| 国产精品亚洲人在线观看| 成人18精品视频| 欧美日韩国产综合久久| 日韩免费一区二区| 中文字幕视频一区| 午夜免费欧美电影| 国产黄人亚洲片| 在线观看视频一区| 久久久亚洲午夜电影| 亚洲美女在线一区| 久久国产精品第一页| 成人午夜激情影院| 91精品国产综合久久久久久久| 久久蜜臀精品av| 亚洲五月六月丁香激情| 国产在线观看一区二区| 日本丰满少妇一区二区三区| 日韩欧美你懂的| 夜夜嗨av一区二区三区中文字幕| 精品一区二区免费在线观看| 91日韩一区二区三区| 精品区一区二区| 亚洲一区二区偷拍精品| 99re成人在线| 欧美视频中文字幕| 精品国产一区久久| 一区二区国产盗摄色噜噜| 国产在线国偷精品产拍免费yy| 国产人久久人人人人爽| 亚洲一区av在线| 成人小视频在线| 欧美不卡一区二区| 亚洲一级片在线观看| 成人免费视频播放| 欧美成人高清电影在线| 亚洲大片免费看| 99精品热视频| 中文字幕免费一区| 久久99九九99精品| 欧美喷潮久久久xxxxx| 亚洲狼人国产精品| www.亚洲激情.com| 国产三级一区二区| 国产在线日韩欧美| 日韩精品专区在线影院重磅| 五月综合激情网| 色999日韩国产欧美一区二区| 国产精品区一区二区三| 国产精品一区二区三区乱码| 欧美电影精品一区二区| 日韩高清国产一区在线| 欧美综合视频在线观看| 亚洲精品日韩综合观看成人91| 国产精品国产三级国产普通话99| 日本中文在线一区| 欧美性一区二区| 亚洲女子a中天字幕| 91网站最新网址| 国产精品久久久久久久浪潮网站| 国产成人精品综合在线观看| 久久综合九色综合97婷婷| 久久av老司机精品网站导航| 日韩精品一区二区三区蜜臀|