亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo2.m

?? 武漢理工大學的程磊上傳非常有用的MATLAB時頻分析工具箱
?? M
字號:
%TFDEMO2 Non stationary signals%	O. Lemoine - May 1996. %	Copyright (c) CNRS.clc; zoom on; clf; echo on;% Time and frequency localizations and the Heisenberg-Gabor inequality %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% The time and frequency localizations can be evaluated thanks to % the M-files loctime.m and locfreq.m of the Toolbox. The first one% gives the average time center (tm) and the duration (T) of a signal,% and the second one the average normalized frequency (num) and the % normalized bandwidth (B). For example, for a linear chirp with a % Gaussian amplitude modulation, we obtain :sig=fmlin(256).*amgauss(256); subplot(211); plot(real(sig)); axis([1 256 -1 1]); grid;xlabel('Time'); ylabel('Real part'); title('Signal in time');dsp=fftshift(abs(fft(sig)).^2);subplot(212); plot((-128:127)/256,dsp); grid;xlabel('Normalized frequency'); ylabel('Squared modulus'); title('Energy spectrum');[tm ,T]=loctime(sig) [num,B]=locfreq(sig)% Press any key to continue... pause; clc;% One interesting property of this product T*B is that it is lower% bounded : T * B >= 1. This constraint, known as the HEISENBERG-GABOR % INEQUALITY, illustrates the fact that a signal can not have % simultaneously an arbitrarily small support in time and in frequency.% If we consider a Gaussian signal,sig=amgauss(256); subplot(211); plot(real(sig)); axis([1 256 0 1]); grid;xlabel('Time'); ylabel('Real part'); title('Signal in time');dsp=fftshift(abs(fft(sig)).^2);subplot(212); plot((-128:127)/256,dsp); grid;xlabel('Normalized frequency'); ylabel('Squared modulus'); title('Energy spectrum');[tm,T]=loctime(sig); [fm,B]=locfreq(sig);[T,B,T*B]% we can see that it minimizes the time-bandwidth product, and thus is % the most concentrated signal in the time-frequency plane.%% Press any key to continue... pause; clc;% Instantaneous frequency and group delay%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% The instantaneous frequency, defined for any analytic signal xa(t) as % the derivative of its phase, if(t) = 1/(2pi) d arg{xa(t)} / dt, can% be a good solution to describe a signal simultaneously in time and in % frequency :sig=fmlin(256); t=(3:256); clf;ifr=instfreq(sig); plotifl(t,ifr'); grid;axis([1 256 0 0.5]); xlabel('Time'); ylabel('Normalized frequency'); title('Instantaneous frequency estimation'); % As we can see from this plot, the instantaneous frequency shows with% success the local frequency behavior as a function of time. %% Press any key to continue... pause;% In a dual way, the local time behavior as a function of frequency can % be described by the GROUP DELAY : %	tx(nu) = -1/(2*pi) * d arg{Xa(nu)}/d nu.% This quantity measures the average time arrival of the frequency nu. % For example, with signal sig of the previous example, we obtain :fnorm=0:.05:.5; gd=sgrpdlay(sig,fnorm); plot(gd,fnorm); grid;xlabel('Time'); ylabel('Normalized frequency'); title('Group delay estimation'); axis([1 256 0 0.5]); % Press any key to continue... pause; clc;% Be careful of the fact that in general, instantaneous frequency and % group delay define two different curves in the time-frequency plane. % They are approximatively identical only when the time-bandwidth product % TB is large. To illustrate this point, let us consider a simple example.% We calculate the instantaneous frequency and group delay of two signals, % the first one having a large TB product, and the second one a small TB% product:t=2:255; sig1=amgauss(256,128,90).*fmlin(256,0,0.5);[tm,T1]=loctime(sig1); [fm,B1]=locfreq(sig1); T1*B1ifr1=instfreq(sig1,t); f1=linspace(0,0.5-1/256,256);gd1=sgrpdlay(sig1,f1); subplot(211); plot(t,ifr1,'*',gd1,f1,'-')axis([1 256 0 0.5]); grid; xlabel('Time'); ylabel('Normalized frequency'); sig2=amgauss(256,128,30).*fmlin(256,0.2,0.4);[tm,T2]=loctime(sig2); [fm,B2]=locfreq(sig2); T2*B2ifr2=instfreq(sig2,t); f2=linspace(0.2,0.4,256);gd2=sgrpdlay(sig2,f2); subplot(212); plot(t,ifr2,'*',gd2,f2,'-')axis([1 256 0.2 0.4]); grid; xlabel('Time'); ylabel('Normalized frequency');  % On the first plot, the two curves are almost superimposed (i.e. the% instantaneous frequency is the inverse transform of the group delay),% whereas on the second plot, the two curves are clearly different.%% Press any key to continue... pause; clc;% Synthesis of a mono-component non stationary signal%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% One part of the Time-Frequency Toolbox is dedicated to the generation % of non stationary signals. In that part, three groups of M-files are % available:%%	- The first one allows to synthesize different amplitude% modulations. These M-files begin with the prefix 'am'. %	- The second one proposes different frequency modulations.  These% M-files begin with 'fm'. %	- The third one is a set of pre-defined signals. Some of them begin% with 'ana' because these signals are analytic, other have special names.% % The first two groups of files can be combined to produce a large class of% non stationary signals, multiplying an amplitude modulation and a % frequency modulation. For example, we can multiply a linear frequency % modulation by a gaussian amplitude modulation :fm1=fmlin(256,0,0.5); am1=amgauss(256);sig1=am1.*fm1; clf; plot(real(sig1)); axis([1 256 -1 1]); xlabel('Time'); ylabel('Real part'); % By default, the signal is centered on the middle (256/2=128), and its% spread is T=32. If you want to center it at an other position t0, just% replace am1 by amgauss(256,t0). %% Press any key to continue... pause; clc; % A second example can be to multiply a pure frequency (constant frequency % modulation) by a one-sided exponential window starting at t=100 :fm2=fmconst(256,0.2); am2=amexpo1s(256,100);sig2=am2.*fm2; plot(real(sig2)); axis([1 256 -1 1]); xlabel('Time'); ylabel('Real part'); % Press any key to continue... pause; % As a third example of mono-component non-stationary signal, we can % consider the M-file doppler.m : this function generates a modelization % of the signal received by a fixed observer from a moving target emitting % a pure frequency.[fm3,am3]=doppler(256,200,4000/60,10,50);sig3=am3.*fm3; plot(real(sig3)); axis([1 256 -0.4 0.4]); xlabel('Time'); ylabel('Real part');% This example corresponds to a target (a car for instance) moving % straightly at the speed of 50 m/s, and passing at 10 m from the observer% (the radar!). The rotating frequency of the engine is 4000 revolutions % per minute, and the sampling frequency of the radar is 200 Hz.%% Press any key to continue... pause; clc; %   In order to have a more realistic modelization of physical signals, we% may need to add some complex noise on these signals. To do so, two M-files% of the Time-Frequency Toolbox are proposed : noisecg.m generates a complex% white or colored Gaussian noise, and noisecu.m, a complex white uniform % noise. For example, if we add complex colored Gaussian noise on the signal% sig1 with a signal to noise ratio of -10 dB,noise=noisecg(256,.8);sign=sigmerge(sig1,noise,-10); plot(real(sign)); Min=min(real(sign)); Max=max(real(sign));xlabel('Time'); ylabel('Real part'); axis([1 256 Min Max]); % the deterministic signal sig1 is now almost imperceptible from the noise.%% Press any key to continue... pause; clc; % Multi-component non stationary signals %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  % The notion of instantaneous frequency implicitly assumes that, at each% time instant, there exists only a single frequency component. A dual% restriction applies to the group delay : the implicit assumption is that% a given frequency is concentrated around a single time instant. Thus, if% these assumptions are no longer valid, which is the case for most of the% multi-component signals, the result obtained using the instantaneous% frequency or the group delay is meaningless.%% For example, let's consider the superposition of two linear frequency % modulations :N=128; x1=fmlin(N,0,0.2); x2=fmlin(N,0.3,0.5);x=x1+x2;% At each time instant t, an ideal time-frequency representation should% represent two different frequencies with the same amplitude. The results% obtained using the instantaneous frequency and the group delay are of% course completely different, and therefore irrelevant :ifr=instfreq(x); subplot(211); plot(ifr);xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);fnorm=0:0.01:0.5; gd=sgrpdlay(x,fnorm); subplot(212); plot(gd,fnorm);xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]); % So these one-dimensional representations, instantaneous frequency and % group delay, are not sufficient to represent all the non stationary % signals. A further step has to be made towards two-dimensional mixed % representations, jointly in time and in frequency. %% Press any key to continue... pause; clc; % To have an idea of what can be made with an time-frequency decomposition,% let's anticipate the following and have a look at the result obtained % with the Short Time Fourier Transform :tfrstft(x); % Here two 'time-frequency components' can be clearly seen, located around% the locus of the two frequency modulations.%% Press any key to end this demonstration.pause;echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日本韩国一区二区三区视频| 午夜伊人狠狠久久| 欧美群妇大交群的观看方式| 91丨九色丨蝌蚪丨老版| 国产精品一二三四区| 精品亚洲国内自在自线福利| 免费在线观看不卡| 毛片av中文字幕一区二区| 日韩黄色免费电影| 日本伊人精品一区二区三区观看方式| 亚洲一本大道在线| 性做久久久久久免费观看欧美| 亚洲国产日韩一区二区| 亚洲成年人影院| 日韩精品乱码免费| 老司机精品视频在线| 欧美日韩日本视频| 欧美视频精品在线| 欧美一级黄色片| 26uuu精品一区二区三区四区在线| 日韩精品一区国产麻豆| 精品国内片67194| 欧美激情一区二区三区在线| 国产精品理论片在线观看| 亚洲乱码中文字幕| 日韩va欧美va亚洲va久久| 六月丁香综合在线视频| 国产不卡一区视频| 99精品欧美一区二区蜜桃免费| 在线观看日韩毛片| 日韩欧美一级二级三级久久久| 久久这里只有精品首页| 亚洲天堂av一区| 日日摸夜夜添夜夜添亚洲女人| 裸体在线国模精品偷拍| 成人国产精品免费观看动漫| 欧美色男人天堂| 国产日产欧美一区二区三区| 一区二区三区免费网站| 美女爽到高潮91| 99视频国产精品| 欧美一区二区福利在线| 亚洲欧美日韩在线播放| 美国三级日本三级久久99| 成人av电影免费在线播放| 欧美丰满少妇xxxxx高潮对白| 久久伊人蜜桃av一区二区| 亚洲一区二区四区蜜桃| 国产精品一二三四五| 欧美日韩久久不卡| 亚洲欧美日韩国产中文在线| 国产乱码精品一区二区三区av| 在线精品亚洲一区二区不卡| 国产亚洲精品bt天堂精选| 午夜电影一区二区三区| www.在线欧美| 2023国产一二三区日本精品2022| 亚洲一区视频在线观看视频| 不卡大黄网站免费看| 精品第一国产综合精品aⅴ| 亚洲成人tv网| 91偷拍与自偷拍精品| 国产人成亚洲第一网站在线播放| 日韩精品欧美成人高清一区二区| 日本韩国欧美国产| 中文字幕亚洲综合久久菠萝蜜| 久久aⅴ国产欧美74aaa| 欧美日韩日日夜夜| 亚洲在线成人精品| 91国偷自产一区二区使用方法| 国产精品无码永久免费888| 国内精品久久久久影院色| 欧美一区二区三区爱爱| 日韩精品欧美成人高清一区二区| 欧美在线影院一区二区| 亚洲主播在线观看| 色婷婷亚洲综合| 亚洲精品国产a久久久久久 | 天使萌一区二区三区免费观看| 在线亚洲人成电影网站色www| 1区2区3区欧美| 色综合天天综合在线视频| 成人免费在线观看入口| 91在线观看高清| 樱花草国产18久久久久| 91电影在线观看| 亚洲成人免费电影| 在线综合+亚洲+欧美中文字幕| 亚洲一区在线观看视频| 欧美日韩在线电影| 麻豆久久久久久| 欧美精品一区视频| 成人黄色在线视频| 一区二区三区四区激情| 欧美日韩精品系列| 久久99久久精品欧美| 久久久久久免费| av一区二区三区黑人| 亚洲一二三区在线观看| 日韩免费电影网站| 东方aⅴ免费观看久久av| 亚洲私人影院在线观看| 3751色影院一区二区三区| 狠狠v欧美v日韩v亚洲ⅴ| 亚洲欧洲精品成人久久奇米网| 91行情网站电视在线观看高清版| 午夜视频一区二区| 久久九九国产精品| 91国产视频在线观看| 麻豆91精品视频| 亚洲精品国产精华液| 精品国产一区二区三区忘忧草 | 久久精品国产亚洲aⅴ| 国产日韩一级二级三级| 在线观看视频一区二区| 经典一区二区三区| 亚洲男人的天堂在线观看| 日韩视频一区二区在线观看| 成人黄色小视频在线观看| 偷拍一区二区三区四区| 国产精品五月天| 精品国产网站在线观看| 94-欧美-setu| 久久er99精品| 亚洲国产一区二区三区青草影视| 久久久精品黄色| 3751色影院一区二区三区| 99riav久久精品riav| 久久成人久久爱| 亚洲成av人片一区二区三区| 中文字幕精品三区| 欧美一级xxx| 色噜噜狠狠一区二区三区果冻| 韩国v欧美v亚洲v日本v| 天堂av在线一区| 亚洲黄色尤物视频| 国产精品三级av| 26uuu欧美日本| 欧美一卡二卡在线| 欧美日韩在线一区二区| 99久精品国产| 成人aa视频在线观看| 激情五月婷婷综合| 美女免费视频一区二区| 亚洲高清视频在线| 亚洲最大成人网4388xx| 亚洲欧洲综合另类| 国产精品你懂的在线欣赏| 久久午夜色播影院免费高清| 精品久久久久久久一区二区蜜臀| 欧美人牲a欧美精品| 欧美日韩精品一区视频| 91国偷自产一区二区三区观看| 不卡影院免费观看| 波多野结衣一区二区三区| 国产99久久久国产精品潘金| 国产精品一区二区久久不卡 | 精品免费视频.| 日韩精品一区二区三区蜜臀 | 免费成人在线网站| 日韩国产在线一| 青椒成人免费视频| 久久激情五月激情| 狠狠久久亚洲欧美| 国产精品系列在线播放| 国产传媒一区在线| 成人性色生活片免费看爆迷你毛片| 国产成人免费网站| 成人美女在线视频| 色先锋资源久久综合| 欧洲一区在线观看| 在线电影院国产精品| 欧美电影免费观看完整版 | 国产一区二区三区在线观看免费 | 精品久久久久久综合日本欧美| 精品国产污污免费网站入口 | 成人网在线播放| 92国产精品观看| 欧美性大战久久久| 日韩视频免费观看高清完整版在线观看| 日韩欧美一区二区视频| 久久久美女艺术照精彩视频福利播放| 国产亚洲精品超碰| 亚洲综合丝袜美腿| 免费观看成人av| 成人动漫中文字幕| 欧美性欧美巨大黑白大战| 日韩一区二区三区在线观看| 久久精品在这里| 亚洲综合自拍偷拍| 激情欧美一区二区| 91丝袜美腿高跟国产极品老师 | 91精品国模一区二区三区| 亚洲精品一区二区在线观看| 亚洲欧洲成人自拍| 日本不卡一区二区| 91在线播放网址| 精品久久国产97色综合| 一区二区三区精品| 国产成人aaa|