?? rawfft.c
字號:
#include <stdio.h> #include <math.h> #include <assert.h> /************************************************************************************/void init_array(int n, double *A_re, double *A_im); void compute_W(int n, double *W_re, double *W_im); void output_array(int n, double *A_re, double *A_im, char *outfile); void permute_bitrev(int n, double *A_re, double *A_im); int bitrev(int inp, int numbits); int log_2(int n); void fft(int n, double *A_re, double *A_im, double *W_re, double *W_im);/************************************************************************************//* gets no. of points from the user, initialize the points and roots of unity lookup table * and lets fft go. finally bit-reverses the results and outputs them into a file. * n should be a power of 2. */ int main(int argc, char *argv[]){ int n; int i; double *A_re, *A_im, *W_re, *W_im; n = 64; A_re = (double*)malloc(sizeof(double)*n); A_im = (double*)malloc(sizeof(double)*n); W_re = (double*)malloc(sizeof(double)*n/2); W_im = (double*)malloc(sizeof(double)*n/2); assert(A_re != NULL && A_im != NULL && W_re != NULL && W_im != NULL); for (i=0; i<3; i++) { init_array(n, A_re, A_im); compute_W(n, W_re, W_im); fft(n, A_re, A_im, W_re, W_im); permute_bitrev(n, A_re, A_im); //output_array(n, A_re, A_im, argv[2]); print_string("done"); } free(A_re); free(A_im); free(W_re); free(W_im); exit(0);}/* initializes the array with some function of n */ void init_array(int n, double *A_re, double *A_im) { int NumPoints, i; NumPoints = 0; #ifdef COMMENT_ONLY for(i=0; i < n*2 ; i+=2) { A_re[NumPoints] = (double)input_buf[i]; A_im[NumPoints] = (double)input_buf[i+1]; /* printf("%d,%d -> %g,%g\n", input_buf[i], input_buf[i+1], A_re[NumPoints], A_im[NumPoints]); */ /* printf("%g %g\n", A_re[NumPoints], A_im[NumPoints]); */ NumPoints++; } #endif for (i=0; i<n; i++) { if (i==1) { A_re[i]=1.0; A_im[i]=0.0; } else { A_re[i]=0.0; A_im[i]=0.0; } #ifdef COMMENT_ONLY A_re[i] = sin_lookup[i]; /* sin((double)i*2*M_PI/(double)n); */ A_im[i] = sin_lookup[i]; /* sin((double)i*2*M_PI/(double)n); */ #endif } //A_re[255] = 1.0; } /* W will contain roots of unity so that W[bitrev(i,log2n-1)] = e^(2*pi*i/n) * n should be a power of 2 * Note: W is bit-reversal permuted because fft(..) goes faster if this is done. * see that function for more details on why we treat 'i' as a (log2n-1) bit number. */void compute_W(int n, double *W_re, double *W_im){ int i, br; int log2n = log_2(n); for (i=0; i<(n/2); i++) { br = bitrev(i,log2n-1); W_re[br] = cos(((double)i*2.0*M_PI)/((double)n)); W_im[br] = sin(((double)i*2.0*M_PI)/((double)n)); } #ifdef COMMENT_ONLY for (i=0;i<(n/2);i++) { br = i; //bitrev(i,log2n-1); printf("(%g\t%g)\n", W_re[br], W_im[br]); } #endif }/* permutes the array using a bit-reversal permutation */ void permute_bitrev(int n, double *A_re, double *A_im) { int i, bri, log2n; double t_re, t_im; log2n = log_2(n); for (i=0; i<n; i++) { bri = bitrev(i, log2n); /* skip already swapped elements */ if (bri <= i) continue; t_re = A_re[i]; t_im = A_im[i]; A_re[i]= A_re[bri]; A_im[i]= A_im[bri]; A_re[bri]= t_re; A_im[bri]= t_im; } } /* treats inp as a numbits number and bitreverses it. * inp < 2^(numbits) for meaningful bit-reversal */ int bitrev(int inp, int numbits){ int i, rev=0; for (i=0; i < numbits; i++) { rev = (rev << 1) | (inp & 1); inp >>= 1; } return rev;}/* returns log n (to the base 2), if n is positive and power of 2 */ int log_2(int n) { int res; for (res=0; n >= 2; res++) n = n >> 1; return res; } /* fft on a set of n points given by A_re and A_im. Bit-reversal permuted roots-of-unity lookup table * is given by W_re and W_im. More specifically, W is the array of first n/2 nth roots of unity stored * in a permuted bitreversal order. * * FFT - Decimation In Time FFT with input array in correct order and output array in bit-reversed order. * * REQ: n should be a power of 2 to work. * * Note: - See www.cs.berkeley.edu/~randit for her thesis on VIRAM FFTs and other details about VHALF section of the algo * (thesis link - http://www.cs.berkeley.edu/~randit/papers/csd-00-1106.pdf) * - See the foll. CS267 website for details of the Decimation In Time FFT implemented here. * (www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html) * - Also, look "Cormen Leicester Rivest [CLR] - Introduction to Algorithms" book for another variant of Iterative-FFT */void fft(int n, double *A_re, double *A_im, double *W_re, double *W_im) { double w_re, w_im, u_re, u_im, t_re, t_im; int m, g, b; int i, mt, k; /* for each stage */ for (m=n; m>=2; m=m>>1) { /* m = n/2^s; mt = m/2; */ mt = m >> 1; /* for each group of butterfly */ for (g=0,k=0; g<n; g+=m,k++) { /* each butterfly group uses only one root of unity. actually, it is the bitrev of this group's number k. * BUT 'bitrev' it as a log2n-1 bit number because we are using a lookup array of nth root of unity and * using cancellation lemma to scale nth root to n/2, n/4,... th root. * * It turns out like the foll. * w.re = W[bitrev(k, log2n-1)].re; * w.im = W[bitrev(k, log2n-1)].im; * Still, we just use k, because the lookup array itself is bit-reversal permuted. */ w_re = W_re[k]; w_im = W_im[k]; /* for each butterfly */ for (b=g; b<(g+mt); b++) { /* printf("bf %d %d %d %f %f %f %f\n", m, g, b, A_re[b], A_im[b], A_re[b+mt], A_im[b+mt]); */ //printf("bf %d %d %d (u,t) %g %g %g %g (w) %g %g\n", m, g, b, A_re[b], A_im[b], A_re[b+mt], A_im[b+mt], w_re, w_im); /* t = w * A[b+mt] */ t_re = w_re * A_re[b+mt] - w_im * A_im[b+mt]; t_im = w_re * A_im[b+mt] + w_im * A_re[b+mt]; /* u = A[b]; in[b] = u + t; in[b+mt] = u - t; */ u_re = A_re[b]; u_im = A_im[b]; A_re[b] = u_re + t_re; A_im[b] = u_im + t_im; A_re[b+mt] = u_re - t_re; A_im[b+mt] = u_im - t_im; /* printf("af %d %d %d %f %f %f %f\n", m, g, b, A_re[b], A_im[b], A_re[b+mt], A_im[b+mt]); */ //printf("af %d %d %d (u,t) %g %g %g %g (w) %g %g\n", m, g, b, A_re[b], A_im[b], A_re[b+mt], A_im[b+mt], w_re, w_im); } } }}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -