亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? 我一直覺得 SVM 是個很有趣的東西
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Wed,  8 Feb 2006 08:31:04 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(54)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(30)</li>
<li><a
href="#/Q5:_Graphic_Interface">Q5:_Graphic_Interface</a>(3)</li>
<li><a
href="#/Q6:_Java_version_of_libsvm">Q6:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q7:_Python_Interface">Q7:_Python_Interface</a>(4)</li>
<li><a
href="#/Q8:_MATLAB_Interface">Q8:_MATLAB_Interface</a>(1)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running without showing any output. What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f430">Is there a way to speed up the pow() function used in calculating polynomial kernels?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the dll file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品午夜在线| 欧美日韩高清不卡| 国产精品乱人伦| 国产成人自拍在线| 亚洲欧洲综合另类| 欧美精品欧美精品系列| 捆绑调教一区二区三区| 欧美国产精品一区二区三区| 99久久精品一区二区| 亚洲国产精品影院| 欧美成人乱码一区二区三区| 成人在线视频一区| 洋洋成人永久网站入口| 91麻豆精品91久久久久久清纯| 黑人巨大精品欧美一区| 国产精品美女久久久久久久久 | 国产午夜亚洲精品羞羞网站| 国产精品18久久久| 亚洲欧美日韩电影| 91精品国产黑色紧身裤美女| 床上的激情91.| 亚洲成av人片一区二区梦乃| 国产日韩精品久久久| 欧美伊人精品成人久久综合97| 久久狠狠亚洲综合| 亚洲四区在线观看| 欧美一二三四在线| 99精品国产99久久久久久白柏| 三级一区在线视频先锋| 国产精品天干天干在观线| 欧美精品tushy高清| 国产 日韩 欧美大片| 日本免费新一区视频| 国产精品国产三级国产a| 欧美xingq一区二区| 在线日韩国产精品| 久久91精品国产91久久小草| 亚洲日本va午夜在线影院| 欧美哺乳videos| 精品视频999| 99精品久久99久久久久| 久久se精品一区精品二区| 一区二区三区丝袜| 中国av一区二区三区| 日韩精品一区二区三区四区视频| 欧美亚洲国产一区二区三区va| 岛国精品一区二区| 国产在线播放一区| 美日韩黄色大片| 亚洲精选一二三| 中文字幕免费不卡| 国产香蕉久久精品综合网| 欧美xxxxx裸体时装秀| 欧美老肥妇做.爰bbww| 色婷婷激情久久| 91亚洲精品一区二区乱码| 国产老妇另类xxxxx| 久久精品国产99| 日韩中文字幕av电影| 精品亚洲国产成人av制服丝袜| 一区二区在线看| 亚洲欧美日韩系列| |精品福利一区二区三区| 欧美国产一区二区| 国产精品视频在线看| 国产日韩欧美激情| 国产三级精品三级| 欧美激情一区二区在线| 国产欧美日韩在线观看| 欧美韩日一区二区三区四区| wwww国产精品欧美| 久久精品人人爽人人爽| 国产情人综合久久777777| 久久久99精品免费观看| 国产日韩欧美精品综合| 国产精品网曝门| 亚洲丝袜另类动漫二区| 一二三四社区欧美黄| 五月婷婷欧美视频| 欧美aaaaaa午夜精品| 久久9热精品视频| 国产一区二区三区久久久| 丰满岳乱妇一区二区三区| 东方欧美亚洲色图在线| 99久久婷婷国产综合精品电影| 99久久精品国产一区| 日本韩国精品在线| 欧美日韩国产另类一区| 欧美变态凌虐bdsm| 亚洲国产精品99久久久久久久久 | 国产精品不卡一区二区三区| 中文字幕一区二区三区在线观看| 国产精品成人一区二区艾草 | 欧美激情一区在线观看| 亚洲欧洲成人av每日更新| 亚洲精品中文在线观看| 亚洲大片精品永久免费| 国产一区二区三区免费| www.日韩大片| 欧美日本高清视频在线观看| 精品久久久久久久一区二区蜜臀| 中文字幕欧美区| 亚洲午夜在线观看视频在线| 久久99久国产精品黄毛片色诱| 国产福利精品一区二区| 在线观看国产精品网站| 欧美一级淫片007| 国产精品理论在线观看| 亚洲一区二区三区在线看| 免费人成在线不卡| 99在线视频精品| 欧美一三区三区四区免费在线看| 久久久久久一级片| 一区二区三区在线影院| 久久精品国产久精国产爱| av动漫一区二区| 欧美一三区三区四区免费在线看| 国产精品免费久久久久| 免费看欧美女人艹b| 一本大道久久a久久综合婷婷| 欧美一区二区播放| 亚洲视频综合在线| 国产自产2019最新不卡| 欧美三级三级三级爽爽爽| 久久综合给合久久狠狠狠97色69| 亚洲激情校园春色| 粉嫩高潮美女一区二区三区 | 欧美体内she精高潮| 国产视频视频一区| 天堂成人国产精品一区| 91丨porny丨蝌蚪视频| 久久亚洲综合色一区二区三区| 亚洲一区二区三区四区五区中文 | 国产精品高潮呻吟| 老司机免费视频一区二区| 欧美怡红院视频| 国产精品久久久久影视| 秋霞国产午夜精品免费视频| 在线免费不卡视频| 国产精品乱人伦中文| 国产高清精品在线| 精品电影一区二区| 日韩国产精品大片| 欧美日韩在线播放一区| 亚洲猫色日本管| 成人小视频免费在线观看| 欧美成人精精品一区二区频| 日韩黄色小视频| 欧美日韩国产精选| 亚洲电影激情视频网站| 日本精品一级二级| 亚洲欧美国产77777| 99久精品国产| 日韩毛片一二三区| 91玉足脚交白嫩脚丫在线播放| 国产香蕉久久精品综合网| 国产剧情一区二区三区| 久久亚洲综合色一区二区三区| 免费观看在线综合| 日韩一区二区在线观看视频播放| 日本中文字幕一区二区视频| 欧美私模裸体表演在线观看| 亚洲一区二区三区在线播放| 欧洲精品一区二区| 亚洲国产欧美日韩另类综合 | 久久久另类综合| 久久99精品久久久久久久久久久久 | 日韩美女在线视频| 极品美女销魂一区二区三区免费| 欧美一卡2卡三卡4卡5免费| 蜜桃av噜噜一区二区三区小说| 欧美一级免费大片| 精品午夜久久福利影院| 国产亚洲精品福利| 成人黄色大片在线观看| 亚洲黄一区二区三区| 欧美日韩在线播| 美女爽到高潮91| 久久久精品国产免费观看同学| 成人激情文学综合网| 亚洲精品一卡二卡| 91.com在线观看| 精品一区二区三区视频在线观看| 久久九九全国免费| 一本色道久久综合狠狠躁的推荐| 亚欧色一区w666天堂| 欧美成人一区二区三区片免费| 国产精品亚洲а∨天堂免在线| 专区另类欧美日韩| 欧美老年两性高潮| 国产精品1区2区3区| 亚洲欧美日韩一区| 日韩欧美国产一二三区| 成人性视频免费网站| 天天射综合影视| 国产丝袜欧美中文另类| 欧美日韩亚洲高清一区二区| 国产在线一区观看| 一区二区三区自拍| 久久综合色8888|