亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? cluster.tex

?? Hidden Markov Toolkit (HTK) 3.2.1 HTK is a toolkit for use in research into automatic speech recogn
?? TEX
字號:
%% Cluster - Gareth Moore        23/01/02 (updated 27/03/02)%\newpage\mysect{Cluster}{Cluster}\mysubsect{Function}{Cluster-Function}\index{cluster@\htool{Cluster}|(}This program is used to statistically cluster words into deterministicclasses.  The main purpose of \htool{Cluster} is to optimise a classmap on the basis of the training text likelihood, although it can alsoimport an existing class map and generate one of the files necessaryfor creating a class-based language model from the \HTK\ languagemodelling tools.Class-based language models use a reduced number of classes relativeto the number of words, with each class containing one or more words,to allow a language model to be able to generalise to unseen trainingcontexts.  Class-based models also typically require less trainingtext to produce a well-trained model than a similar complexity wordmodel, and are often more compact due to the much reduced number ofpossible distinct history contexts that can be encountered in thetraining data.\htool{Cluster} takes as input a set of one or more training text gramfiles, which may optionally be weighted on input, and their associatedword map.  It then clusters the words in the word map into classesusing a bigram likelihood measure.  Due to the computationalcomplexity of this task a sub-optimal greedy algorithm is used, butmultiple iterations of this algorithm may be performed in order tofurther refine the class map, although at some point a local maximumwill be reached where the class map will not changefurther.\footnote{On a 65,000 word vocabulary test set with 170 millionwords of training text this was found to occur after around 45iterations}  In practice as few as two iterations may be perfectlyadequate, even with large training data sets.The algorithm works by considering each word in the vocabulary in turnand calculating the change in bigram training text likelihood if theword was moved from its default class (see below) to each other classin turn.  The word is then moved to the class which increases thelikelihood the most, or it is left in its current class if no suchincrease is found.  Each iteration of the algorithm considers eachword exactly once.  Because this can be a slow process, with typicalexecution times measured in terms of a few hours, not a few minutes,the \htool{Cluster} tool also allows \textit{recovery} files to be writtenat regular intervals, which contain the current class map part-waythrough an iteration along with associated files detailing at whatpoint in the iteration the class map was exported.  These files arenot essential for operation, but might be desirable if there is a riskof a long-running process being killed via some external influence.During the execution of an iteration the tool claims no newmemory,\footnote{other than a few small local variables taken from thestack as functions are called} so it cannot crashin the middle of an iteration due to a lack of memory (it can,however, fail to start an iteration in the first place).Before beginning an iteration, \htool{Cluster} places each word eitherinto a default class or one specified via the \texttt{-l}, importclassmap, or \texttt{-x}, use recovery, options.  The defaultdistribution, given $m$ classes, is to place the most frequent $(m-1)$words into singleton classes and then the remainder into the remainingclass.  \htool{Cluster} allows words to be considered in eitherdecreasing frequency of occurrence order, or the order they areencountered in the word map.  The popular choice is to use the formermethod, although in experiments it was found that the more randomsecond approach typically gave better class maps after feweriterations in practice.\footnote{Note that these schemes areapproximately similar, since the most frequent words are most likelyto be encountered sooner in the training text and thus occur higher upin the word map} The \texttt{-w} option specifies this choice.During execution \htool{Cluster} will always write a logfiledescribing the changes it makes to the classmap, unless you explicitlydisable this using the \texttt{-n} option.  If the \texttt{-v} switchis used then this logfile is written in explicit English, allowing youto easily trace the execution of the clusterer; without \texttt{-v}then similar information is exported in a more compact format.Two or three special classes are also defined.  The sentence start andsentence end word tokens are always kept in singleton classes, andoptionally the unknown word token can be kept in a singleton class too-- pass the \texttt{-k} option.\footnote{The author always uses thisoption but has not empirically tested its efficaciousness} Thesetokens are placed in these classes on initialisation and no moves toor from these classes are ever considered.Language model files are built using either the \texttt{-p} or\texttt{-q} options, which are effectively equivalent if usingthe \HTK\ language modelling tools as black boxes.  The former createsa word-given-class probabilities file, whilst the latter stores wordcounts and lets the language model code itself calculate the sameprobabilities.\mysubsect{Use}{Cluster-Use}\htool{Cluster} is invoked by the command line\begin{verbatim}   Cluster [options] mapfile [mult] gramfile [[mult] gramfile ...]\end{verbatim}The given word map is loaded and then each of the specified gram filesis imported.  The list of input gram files can be interspersed withmultipliers. These are floating-point format numbers which must beginwith a plus or minus character (e.g. \texttt{+1.0}, \texttt{-0.5},etc.). The effect of a multiplier \texttt{mult} is to scale the $n$-gramcounts in the following gram files by the factor \texttt{mult}. Theresulting scaled counts are rounded to the nearest integer whenactually used in the clustering algorithm. A multiplier stays ineffect until it is redefined.The allowable options to \htool{Cluster} are as follows\begin{optlist}  \ttitem{-c n} Use {\tt n} classes. This specifies the number of        classes that should be in the resultant class map.  \ttitem{-i n} Perform {\tt n} iterations. This is the number of        iterations of the clustering algorithm that should be        performed. (If you are using the {\tt -x} option then        completing the current iteration does not count towards        the total number, so use {\tt -i 0} to complete it and        then finish)  \ttitem{-k} Keep the special unknown word token in its own        singleton class.  If not passed it can be moved to or from        any class.  \ttitem{-l fn} Load the classmap {\tt fn} at start up and when        performing any further iterations do so from this starting        point.  \ttitem{-m} Record the running value of the maximum likelihood        function used by the clusterer to optimised the training        text likelihood in the log file.  This option is principally        provided for debugging purposes.  \ttitem{-n} Do not write any log file during execution of an        iteration.  \ttitem{-o fn} Specify the prefix of all output files.  All output        class map, logfile and recovery files share the same filename        prefix, and this is specified via the {\tt -o} switch.  The        default is {\tt cluster}.  \ttitem{-p fn} Write a word-given-class probabilities file. Either        this or the {\tt -q} switch are required to actually build a        class-based language model. The \HTK\ language model library,        \htool{LModel}, supports both probability and count-based        class files.  There is no difference in use, although each        allows different types of manual manipulation of the file.        Note that if you do not pass {\tt -p} or {\tt -q} you may        run \htool{Cluster} at a later date using the {\tt -l} and        {\tt -i 0} options to just produce a language model file.  \ttitem{-q fn} Write a word-given-class counts file. See the        documentation for {\tt -p}.  \ttitem{-r n} Write recovery files after moving {\tt n} words        since the previous recovery file was written or an iteration        began.  Pass {\tt -r n} to disable writing of recovery files.  \ttitem{-s tkn} Specify the sentence start token.  \ttitem{-t tkn} Specify the sentence end token.  \ttitem{-u tkn} Specify the unknown word token.  \ttitem{-v} Use verbose log file format.  \ttitem{-w [WMAP/FREQ]} Specify the order in which word moves are        considered. Default is {\tt WMAP} in which words are        considered in the order they are encountered in the word map.        Specifying {\tt FREQ} will consider the most frequent word        first and then the remainder in decreasing order of frequency.  \ttitem{-x fn} Continue execution from recovery file {\tt fn}.\end{optlist}\stdopts{Cluster}\mysubsect{Tracing}{Cluster-Tracing}\htool{Cluster} supports the following trace options, where each trace flag is given using an octal base:\begin{optlist}  \ttitem{00001} basic progress reporting.   \ttitem{00002} report major file operations - good for following start-up.  \ttitem{00004} more detailed progress reporting.  \ttitem{00010} trace memory usage during execution and at end.\end{optlist}Trace flags are set using the \texttt{-T} option or the \texttt{TRACE}configuration variable.\index{cluster@\htool{Cluster}|)}

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
美女一区二区在线观看| 成人性生交大片免费看在线播放| 国产宾馆实践打屁股91| 91在线丨porny丨国产| 欧美成人一区二区三区在线观看 | 不卡av在线免费观看| 欧美吞精做爰啪啪高潮| 国产精品拍天天在线| 精品中文字幕一区二区| 精品国一区二区三区| 日本系列欧美系列| 日韩欧美在线综合网| 亚洲一区二区视频在线| 日本精品一级二级| 一区二区三区久久| 欧美日韩精品一区二区三区蜜桃| 亚洲少妇最新在线视频| 色婷婷综合五月| 久久久精品天堂| 成人午夜激情在线| 亚洲视频在线观看三级| 成人免费福利片| 久久亚洲精品小早川怜子| 国产精品一区专区| 欧美日韩精品一二三区| 亚洲蜜桃精久久久久久久| 久久青草国产手机看片福利盒子| 亚洲色图一区二区三区| 欧美色区777第一页| 蜜臀精品一区二区三区在线观看| 久久亚区不卡日本| 91福利国产精品| 美女被吸乳得到大胸91| 国产精品嫩草99a| 精品视频在线免费观看| 国内精品久久久久影院色| 99麻豆久久久国产精品免费| 亚洲蜜臀av乱码久久精品| 欧美一级搡bbbb搡bbbb| 成人黄色在线看| 日本不卡高清视频| 亚洲私人黄色宅男| 欧美xxx久久| 一本一道综合狠狠老| 韩国精品一区二区| 亚洲自拍偷拍图区| 国产精品欧美极品| 91精品国产综合久久蜜臀| 91在线观看一区二区| 免费成人av资源网| 亚洲国产欧美在线人成| 日本一区二区视频在线观看| 欧美一区二区三区啪啪| 91豆麻精品91久久久久久| 国产高清精品网站| 麻豆国产91在线播放| 亚洲九九爱视频| 中文字幕第一区| 欧美电影免费提供在线观看| 欧美三级视频在线| 91在线观看成人| 国产成人在线视频网址| 奇米影视一区二区三区| 亚洲专区一二三| 亚洲图片激情小说| 国产精品免费看片| 欧美精品一区二区三区四区| 欧美高清一级片在线| 色天天综合色天天久久| 成人涩涩免费视频| 国产精品一二一区| 国模少妇一区二区三区| 日本一不卡视频| 日本欧美在线看| 亚洲一区二区在线观看视频| 亚洲人成在线播放网站岛国| 国产三区在线成人av| 久久久久久久电影| 久久奇米777| 国产亚洲综合在线| 久久久精品国产免费观看同学| 日韩欧美一级二级| 欧美一级午夜免费电影| 日韩亚洲欧美一区二区三区| 日韩视频一区二区三区在线播放| 91麻豆精品国产91久久久久久 | 亚洲一区免费观看| 亚洲一区二区三区爽爽爽爽爽| 亚洲天堂2016| 一区二区在线电影| 亚洲国产欧美在线| 污片在线观看一区二区| 五月天久久比比资源色| 日韩不卡手机在线v区| 久久精品国产77777蜜臀| 日韩影院在线观看| 久久不见久久见免费视频1| 精品亚洲免费视频| 国产aⅴ综合色| 91丨porny丨户外露出| 色吧成人激情小说| 8v天堂国产在线一区二区| 精品少妇一区二区三区日产乱码| 精品国产免费一区二区三区四区 | 亚洲国产精品久久艾草纯爱| 日韩精品亚洲专区| 国产一区二区三区av电影| 国产99一区视频免费| 日本韩国一区二区三区| 91麻豆精品91久久久久久清纯 | 久久精品国产网站| 国产乱码精品一区二区三区忘忧草| 丰满亚洲少妇av| 91福利区一区二区三区| 欧美成人aa大片| 国产精品美女久久久久av爽李琼| 一区二区三区丝袜| 免费观看成人av| 成人av手机在线观看| 欧美日韩激情一区二区三区| 日韩精品中文字幕一区二区三区| 国产日产欧美一区二区视频| 亚洲一区欧美一区| 国产激情视频一区二区三区欧美| 91色在线porny| 日韩一级大片在线| 亚洲四区在线观看| 久久国内精品视频| 99九九99九九九视频精品| 欧美一区2区视频在线观看| 国产日本欧美一区二区| 亚洲成人自拍网| 福利一区在线观看| 欧美高清视频一二三区| 日韩伦理av电影| 国产中文字幕一区| 欧美日韩www| 综合激情网...| 久久精品国产成人一区二区三区| 99国产精品国产精品毛片| 欧美v亚洲v综合ⅴ国产v| 夜夜爽夜夜爽精品视频| 国产99久久久国产精品| 欧美一区二区大片| 亚洲制服丝袜在线| 99久久伊人网影院| 久久综合色一综合色88| 性欧美疯狂xxxxbbbb| 99精品一区二区三区| 国产色产综合产在线视频| 蜜臀久久99精品久久久画质超高清 | 成人aa视频在线观看| 精品国产网站在线观看| 亚洲www啪成人一区二区麻豆| 成人性生交大片免费| 久久久久久久一区| 国内成人免费视频| 精品国一区二区三区| 亚州成人在线电影| 欧美日韩一区二区三区免费看| 国产欧美精品一区| 韩国三级中文字幕hd久久精品| 91精品国产综合久久香蕉麻豆| 亚洲国产另类av| 91丨porny丨户外露出| 国产精品国产三级国产有无不卡| 国产一区二区三区免费看| 精品国产一区二区三区不卡 | 日本美女视频一区二区| 欧美日韩免费不卡视频一区二区三区| 亚洲色图在线播放| 一本到三区不卡视频| 亚洲人成伊人成综合网小说| 91社区在线播放| 一区二区三区产品免费精品久久75| www.亚洲精品| 亚洲人成电影网站色mp4| 色素色在线综合| 亚洲一区成人在线| 欧美巨大另类极品videosbest | 国产一区视频在线看| 欧美不卡在线视频| 激情五月激情综合网| 久久新电视剧免费观看| 成人免费视频免费观看| 中文字幕亚洲欧美在线不卡| 91丨九色丨黑人外教| 亚洲综合久久av| 91精品国产综合久久久久久漫画| 麻豆成人av在线| 中文欧美字幕免费| 色综合欧美在线| 婷婷一区二区三区| 欧美大片一区二区| 成人午夜精品一区二区三区| 亚洲精品videosex极品| 3d动漫精品啪啪| 成人综合在线视频| 一区二区三区精品久久久| 欧美老肥妇做.爰bbww|