?? 3040.htm
字號:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><center><b><br>簡介</b></center><table border="0" cellpadding="0" cellspacing="0" width="560"> <tr> <td width="30"></td> <td width="530">牛頓三大定律——動力學的理論基礎(相當于靜力學的公理)</td> </tr> <tr> <td width="30"><font color="#0000FF"><b>一、</b></font></td> <td width="530"><b><font color="#0000FF">牛頓三大定律:</font></b></td> </tr> <tr> <td width="30"></td> <td width="530">(前面以講,不累述)</td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td bgcolor="#FFFFCC">問題:牛頓定律對剛體是否成立?</td> </tr> </table> </td> </tr> <tr> <td width="30"><font color="#0000FF"><b>二、</b></font></td> <td width="530"><b><font color="#0000FF">(運動)參考系:</font></b></td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td bgcolor="#FFFFCC">提問:①什么是慣性參考系和非慣性參考系?一般如何確定慣性參考系?</td> </tr> </table> </td> </tr> <tr> <td width="30"></td> <td width="530"><b>慣性參考系</b>——質點在此參考系中作勻速直線運動(<b>慣性運動</b>),且受力為零。即牛頓所謂“絕對靜止不動的參考系”。相對慣性參考系作勻速直線運動的參考系為慣性參考系。</td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td bgcolor="#FFFFCC">②牛頓定律在何種參考系中成立?一定是慣性參考系嗎?</td> </tr> </table> </td> </tr> <tr> <td width="30"></td> <td width="530">第一、第二定律在慣性參考系中成立,第三定律可在非慣性參考系中成立。</td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td bgcolor="#FFFFCC">③已學過的動力學普遍定理(動能定理、動量定理、動量矩定理)在何種參考系中成立?</td> </tr> </table> </td> </tr> <tr> <td width="30"></td> <td width="530">慣性參考系。</td> </tr> <tr> <td width="30"><font color="#0000FF"><b>三、</b></font></td> <td width="530"><font color="#0000FF"><b>質點運動微分方程(動力學基本方程)</b>(指慣性參考系下)</font></td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td>即牛二定律的微分形式:</td> <td><img border="0" src="pic/3040.h2.gif" width="68" height="28"></td> </tr> </table> </td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td><img border="0" src="../jingli/pic/jian.gif" width="35" height="20"></td> <td>矢徑式</td> <td><img border="0" src="pic/3040.h3.gif" width="77" height="49"></td> <td><img border="0" src="../jingli/pic/jian.gif" width="35" height="20"></td> <td>直角坐標式</td> <td><img border="0" src="pic/3040.h4.gif" width="87" height="153"></td> <td><img border="0" src="../jingli/pic/jian.gif" width="35" height="20"></td> <td>自然坐標式</td> <td><img border="0" src="pic/3040.h5.gif" width="88" height="153"></td> </tr> </table> </td> </tr> <tr> <td width="30"><b><font color="#0000FF">四、</font></b></td> <td width="530"><b><font color="#0000FF">非慣性參考系下質點運動微分方程(相對運動微分方程)(*)</font></b></td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">質點M,慣性參考系Oxyz(定系),非慣性參考系O'x'y'z'(動系)。現研究非慣性參考系下質點的運動微分方程。</td> <td width="50%" rowspan="3"> <p align="center"><img border="0" src="pic/3040.h6.gif" width="169" height="167"></td> </tr> <tr> <td width="50%">慣性參考系Oxyz中:</td> </tr> <tr> <td width="50%"><img border="0" src="pic/3040.h7.gif" width="69" height="29"></td> </tr> </table> </td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td><img border="0" src="../jingli/pic/jian.gif" width="35" height="20"></td> <td><img border="0" src="pic/3040.h8.gif" width="152" height="29"></td> <td></td> <td></td> <td width="8"></td> <td></td> </tr> <tr> <td><img border="0" src="../jingli/pic/jian.gif" width="35" height="20"></td> <td><img border="0" src="pic/3040.h9.gif" width="162" height="29"></td> <td></td> <td></td> <td width="8"></td> <td></td> </tr> <tr> <td rowspan="2"><img border="0" src="../jingli/pic/jian.gif" width="35" height="20"></td> <td rowspan="2"> <p align="center"><img border="0" src="pic/3040.h10.gif" width="142" height="31"></td> <td rowspan="2"><img border="0" src="../jingli/pic/jian.gif" width="35" height="20"></td> <td><img border="0" src="pic/3040.h11.gif" width="77" height="29"></td> <td width="8"></td> <td><b>牽連慣性力</b></td> </tr> <tr> <td><img border="0" src="pic/3040.h12.gif" width="81" height="29"></td> <td width="8"></td> <td><b>哥氏慣性力</b></td> </tr> </table> </td> </tr> <tr> <td width="30"></td> <td width="530"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td><b>特例:</b>當非慣性參考系O'X'Y'Z'作勻速直線運動時,</td> <td><img border="0" src="pic/3040.h13.gif" width="116" height="30"></td> <td>,則:</td> <td></td> </tr> <tr> <td><img border="0" src="pic/3040.h14.gif" width="68" height="29"></td> <td></td> <td></td> <td></td> </tr> </table> </td> </tr> <tr> <td width="30"></td> <td width="530"><b>說明:</b></td> </tr> <tr> <td width="30"></td> <td width="530">①在作慣性運動的動系中,發生的一切力學現象及其內在規律,與在定系中發生的完全相同。——伽利略相對性原理。</td> </tr> <tr> <td width="30"></td> <td width="530">②相對慣性參考系作慣性運動的參考系仍是慣性參考系。</td> </tr> <tr> <td width="30"></td> <td width="530"><b>地球自轉影響的三種現象:</b><br> ①懸掛小球的軟線偏離地球徑向(牽連慣性力影響),p127;<br> ②北半球運動物體右移,南半球相反(科氏慣性力影響),p128;<br> ③落體偏東(南北半球相同;科氏慣性力影響),p130 。——蕭龍翔老師算出,物體自天塔頂部下落,偏東74mm。</td> </tr> <tr> <td width="560" colspan="2"> <p align="center"> <a href="3001.htm"><font color="#FF6666">[ 上一節 ]</font></a> <a href="3041.htm"><font color="#00CC00">[ 下一節 ]</font></a> </td> </tr> </table> </BODY></HTML>
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -