?? 3052_4.htm
字號:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><center><b><br>4 質心運動定理</b></center> <table border="0" cellpadding="0" cellspacing="0" width="560"> <tr> <td width="20"></td> <td width="540">質心運動定理是動量定理的另一種表達形式,重要而實用。</td> </tr> <tr> <td width="20">一、</td> <td width="540">質心運動定理</td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="25%" align="center">動量定理微分形式:</td> <td width="25%" align="center"><img border="0" src="pic/3052_437.GIF"></td> <td width="25%" align="center"><img border="0" src="pic/3052_438.GIF"></td> <td width="25%" align="center"><img border="0" src="pic/3052_439.GIF"></td> </tr> <tr> <td width="25%" align="center"><img border="0" src="pic/3052_440.GIF"></td> <td width="25%" align="center"><img border="0" src="pic/3052_441.GIF"></td> <td width="25%" align="center">——質心運動定理</td> <td width="25%" align="center"></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"><b>注:</b><br> ①此定理與動量定理完全等價,都反映質系隨質心平動部分與所受外力主矢之間的關系,但形式和所用物理量不同。質心運動定理已不再使用動量和沖量的概念;</td> </tr> <tr> <td width="20"></td> <td width="540">②形式與牛二定律(動力學基本方程)相同,但含義不同;</td> </tr> <tr> <td width="20"></td> <td width="540">③適于任意質點系;</td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td>④對剛體系,由于</td> <td><img border="0" src="pic/3052_442.GIF"></td> <td>,式中</td> <td><img border="0" src="pic/3052_443.GIF"></td> <td>表示每個剛體的質量和質心</td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td>的加速度,則質心運動定理又可寫為</td> <td> <img border="0" src="pic/3052_444.GIF"></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例4(例1,用質心運動定理求反力)</td> <td width="50%" rowspan="5"> <p align="center"><img border="0" src="pic/3052_445.GIF"></td> </tr> <tr> <td width="50%"></td> </tr> <tr> <td width="50%">圖示系統(tǒng)。均質滾子A、滑輪B重量和半徑均為Q和r,滾子純滾動,三角塊固定不動,傾角為α,重量為G,重物重量P。求地面給三角塊的反力。</td> </tr> <tr> <td width="50%">注:需先用動能定理求各剛體質心加速度,再用下面形式質心運動定理求反力:</td> </tr> <tr> <td width="50%"> <p align="center"><img border="0" src="pic/3052_446.GIF"></td> </tr> </table> </td> </tr> <tr> <td width="20"><b><font color="#0000FF">二、</font></b></td> <td width="540"><b><font color="#0000FF">質心運動守恒</font></b></td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td><b>質心運動定理: </b> </td> <td><img border="0" src="pic/3052_447.GIF"></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="7%" align="center"><img border="0" src="pic/3052_448.GIF"></td> <td width="15%" align="center"><img border="0" src="pic/3052_449.GIF"></td> <td width="20%" align="center"><img border="0" src="pic/3052_450.GIF"></td> <td width="27%" align="center"><img border="0" src="pic/3052_451.GIF"></td> <td width="31%" align="center"><b>——質點系質心運動守恒</b></td> </tr> <tr> <td width="7%" align="center"></td> <td width="15%" align="center"></td> <td width="20%" align="center"><img border="0" src="pic/3052_452.GIF"></td> <td width="27%" align="center"><img border="0" src="pic/3052_453.GIF"></td> <td width="31%" align="center"><b>——質點系質心位置不變</b></td> </tr> <tr> <td width="7%" align="center"></td> <td width="15%" align="center"><img border="0" src="pic/3052_454.GIF"></td> <td width="20%" align="center"><img border="0" src="pic/3052_455.GIF"></td> <td width="27%" align="center"><img border="0" src="pic/3052_456.GIF"></td> <td width="31%" align="center"><b>——質點系質心在x方向上運動守恒</b></td> </tr> <tr> <td width="7%" align="center"></td> <td width="15%" align="center"></td> <td width="20%" align="center"><img border="0" src="pic/3052_457.GIF"></td> <td width="27%" align="center"><img border="0" src="pic/3052_458.GIF"></td> <td width="31%" align="center"><b>——質點系質心在x方向上位置不變</b></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540">注:質心運動守恒多用于求初始靜止的系統(tǒng),滿足守恒條件,經過一段時間后某個物體的位移;而動量守恒定律多用于求速度。</td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例5(接例3,用質心運動守恒求位移)</td> <td width="50%" rowspan="2"> <p align="center"><img border="0" src="pic/3052_459.GIF"></td> </tr> <tr> <td width="50%">圖示系統(tǒng)。均質滾子A、滑輪B重量和半徑均為Q和r,滾子純滾動,三角塊放在光滑平面上,傾角為α,重量為G,重物重量P。系統(tǒng)初始靜止。求重物上升s時,三角塊的位移s1 。設重物相對三角塊鉛直運動,滾子與斜面不脫開。</td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例6(例5-10 較難,需綜合運動質心運動守恒、動能定理、質心運動定理及較多的運動學分析)</td> <td width="50%" rowspan="2"> <p align="center"><img border="0" src="pic/3052_460.GIF"></td> </tr> <tr> <td width="50%">均質細桿AB長l,質量為m,B端放在光滑水平面上。初始時桿靜止,立于鉛直位置,受擾后在鉛直面內倒下。求桿運動到與鉛直線成φ角時,桿的角速度、角加速度和地面的反力。</td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"></td> </tr> <tr> <td width="20"></td> <td width="540"></td> </tr> <tr> <td width="560" colspan="2"> <p align="center"> <a href="3052_3.htm"><font color="#FF6666">[ 上一節(jié) ]</font></a> <a href="3053_1.htm"><font color="#00CC00">[ 下一節(jié) ]</font></a> </td> </tr> </table> </BODY></HTML>
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -