?? 3052_3.htm
字號:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><center><b><br>3 動量定理</b></center> <table border="0" cellpadding="0" cellspacing="0" width="560"> <tr> <td width="20"><b><font color="#0000FF">一、</font></b></td> <td width="540"><b><font color="#0000FF">質(zhì)點的動量定理</font></b></td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="14%" align="center"><img border="0" src="pic/3052_311.GIF" width="63" height="27"></td> <td width="14%" align="center"><img border="0" src="pic/3052_312.GIF" width="27" height="22"></td> <td width="14%" align="center"><img border="0" src="pic/3052_313.GIF" width="88" height="49"></td> <td width="14%" align="center">或</td> <td width="14%" align="center"><img border="0" src="pic/3052_314.GIF" width="92" height="30"></td> <td width="15%" align="center"><img border="0" src="pic/3052_312.GIF" width="27" height="22"></td> <td width="15%" align="center"><img border="0" src="pic/3052_315.GIF" width="117" height="30"></td> </tr> <tr> <td width="14%" align="center">牛而定律</td> <td width="14%" align="center"></td> <td width="42%" align="center" colspan="3">動量定理的微分形式</td> <td width="15%" align="center"></td> <td width="15%" align="center">動量定理的積分形式(有限形式)</td> </tr> </table> </td> </tr> <tr> <td width="20"><b><font color="#0000FF">二、</font></b></td> <td width="540"><b><font color="#0000FF">質(zhì)點系的動量定理</font></b></td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td>任意質(zhì)點: </td> <td><img border="0" src="pic/3052_316.GIF" width="154" height="48"></td> <td> 前者為外力,后者為內(nèi)力,且</td> <td><img border="0" src="pic/3052_317.GIF" width="71" height="31"></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td colspan="7">求和:</td> </tr> <tr> <td><img border="0" src="pic/3052_312.GIF" width="27" height="22"></td> <td> 微分形式: </td> <td><img border="0" src="pic/3052_318.GIF" width="91" height="51"></td> <td> <img border="0" src="pic/3052_312.GIF" width="27" height="22"> </td> <td> 積分形式: </td> <td><img border="0" src="pic/3052_319.GIF" width="120" height="29"></td> <td></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540">反映質(zhì)系隨質(zhì)心平動部分與所受外力(沖量)主矢之間的關(guān)系。</td> </tr> <tr> <td width="20"></td> <td width="540"><b>解題步驟:</b></td> </tr> <tr> <td width="20"></td> <td width="540">(一)取研究對象(取分離體);</td> </tr> <tr> <td width="20"></td> <td width="540">(二)畫受力圖、運動圖(只畫外力、不畫內(nèi)力);</td> </tr> <tr> <td width="20"></td> <td width="540">(三)列解方程。</td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例1:</td> <td width="50%" rowspan="3"> <p align="center"><img border="0" src="pic/3052_320.GIF" width="250" height="189"></td> </tr> <tr> <td width="50%">圖示系統(tǒng)。均質(zhì)滾子A、滑輪B重量和半徑均為Q和r,滾子純滾動,三角塊固定不動,傾角為α,重量為G,重物重量P。求地面給三角塊的反力。<br> <br> 注:需先用動能定理求各剛體質(zhì)心加速度,再用下面形式動量定理求反力:</td> </tr> <tr> <td width="50%"> <p align="center"><img border="0" src="pic/3052_321.GIF" width="91" height="51"></td> </tr> </table> </td> </tr> <tr> <td width="20" valign="bottom"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例2:</td> <td width="50%" rowspan="5"> <p align="center"><img border="0" src="pic/3052_322.GIF" width="201" height="244"></td> </tr> <tr> <td width="50%">理想、定常、不可壓縮流體在管道內(nèi)運動。已知流體密度ρ,兩截面流速v1 和v2。求此段流體給管道的附加動壓力。<br> (注:附加動壓力=總壓力—靜壓力)</td> </tr> <tr> <td width="50%"></td> </tr> <tr> <td width="50%"></td> </tr> <tr> <td width="50%"></td> </tr> </table> </td> </tr> <tr> <td width="20"><b><font color="#0000FF">三、</font></b></td> <td width="540"><b><font color="#0000FF">動量守恒定理</font></b></td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td>動量定理微分形式: </td> <td><img border="0" src="pic/3052_323.GIF" width="91" height="51"></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="11%" rowspan="2" align="center"><img border="0" src="pic/3052_324.GIF" width="38" height="43"></td> <td width="21%" align="center"><img border="0" src="pic/3052_325.GIF" width="76" height="27"></td> <td width="11%" align="center"><img border="0" src="pic/3052_326.GIF" width="27" height="22"></td> <td width="20%" align="center"><img border="0" src="pic/3052_327.GIF" width="85" height="23"></td> <td width="37%" align="center">——質(zhì)點系動量守恒</td> </tr> <tr> <td width="21%" align="center"><img border="0" src="pic/3052_328.GIF" width="76" height="25"></td> <td width="11%" align="center"><img border="0" src="pic/3052_329.GIF" width="27" height="22"></td> <td width="20%" align="center"><img border="0" src="pic/3052_330.GIF" width="73" height="25"></td> <td width="37%" align="center">——質(zhì)點系在x方向上動量守恒</td> </tr> <tr> <td width="100%" colspan="5"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td>動量定理積分形式:</td> <td><img border="0" src="pic/3052_331.GIF" width="120" height="29"></td> </tr> </table> </td> </tr> <tr> <td width="11%" align="center" rowspan="2"><img border="0" src="pic/3052_324.GIF" width="38" height="43"></td> <td width="21%" align="center"><img border="0" src="pic/3052_332.GIF" width="80" height="29"></td> <td width="11%" align="center"><img border="0" src="pic/3052_329.GIF" width="27" height="22"></td> <td width="20%" align="center"><img border="0" src="pic/3052_333.GIF" width="142" height="30"></td> <td width="37%" align="center">——質(zhì)點系動量守恒</td> </tr> <tr> <td width="21%" align="center"><img border="0" src="pic/3052_334.GIF" width="79" height="33"></td> <td width="11%" align="center"><img border="0" src="pic/3052_329.GIF" width="27" height="22"></td> <td width="20%" align="center"><img border="0" src="pic/3052_335.GIF" width="135" height="28"></td> <td width="37%" align="center">——質(zhì)點系在x方向上動量守恒</td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"></td> </tr> <tr> <td width="20"></td> <td width="540">反例:①光滑水平面上由繩拉住繞定點作勻速圓周運動的小球;<br> ②圓錐擺</td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例3:</td> <td width="50%" rowspan="3"> <p align="center"><img border="0" src="pic/3052_336.GIF" width="250" height="189"></td> </tr> <tr> <td width="50%">圖示系統(tǒng)。均質(zhì)滾子A、滑輪B重量和半徑均為Q和r,滾子純滾動,三角塊放在光滑平面上,傾角為α,重量為G,重物重量P。系統(tǒng)初始靜止。求重物上升s時,三角塊的速度v1。設(shè)重物相對三角塊鉛直運動,滾子與斜面不脫開。</td> </tr> <tr> <td width="50%">注:需綜合應(yīng)用動量守恒和動能定理<br> (詳見講義一稿)</td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"></td> </tr> <tr> <td width="560" colspan="2"> <p align="center"> <a href="3052_2.htm"><font color="#FF6666">[ 上一節(jié) ]</font></a> <a href="3052_4.htm"><font color="#00CC00">[ 下一節(jié) ]</font></a> </td> </tr> </table> </BODY></HTML>
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -