?? wienerfilter_plot.m
字號:
% File: WienerFilter_Plot.m
% -------------------------
% This file is used to draw the various plots
function WienerFilter_Plot()
load WienerFilter_SeqGen.mat;
load WienerFilter_Core.mat;
load WienerFiltering.mat;
figure();
% Plots I
% Plot the original signal s(n) and the input sequence x(n) for the last
% 100 samples
for i = 1: 100
signalvector_s_cast(i) = signalvector_s(400 + i);
signalvector_x_cast(i) = signalvector_x(400 + i);
end
index = [401: 1: L];
subplot(2, 2, 1);
hold all;
xlabel('400 \leq {\itn} \leq 500');
ylabel('Sample of Random Sequences');
title('Original Signal {\its(n)} vs. Input Sequence {\itx(n)}');
plot(index, signalvector_s_cast);
plot(index, signalvector_x_cast);
legend( 'Original Signal', 'Input Sequence');
grid off;
hold off;
% Plots II
% Plot the ideal filter output and fir filter output for the last 100
% samples
for i = 1: 100
output_vector_fir_cast(i) = output_fir(400 + i);
output_vector_ide_cast(i) = output_ide(400 + i);
end
%index = [401: 1: L];
%subplot(2, 2, 2);
%hold all;
%xlabel('400 \leq {\itn} \leq 500');
%ylabel('Sample of Random Sequences');
%title('Ideal Filter Output{\its_I(n)} vs. FIR Filter Output{\its_R(n)}');
%plot(index, output_vector_ide_cast);
%plot(index, output_vector_fir_cast);
%legend( 'Ideal Filter Output', 'FIR Filter Output');
%grid off;
%hold off;
% Plot the ideal wiener filter and the fir wiener filter for N samples
index = [1: 1: N];
subplot(2, 2, 2);
hold all;
xlabel('1 \leq {\itn} \leq N');
ylabel('Filter Samples');
title('Ideal Wiener Filter {\ith_I(n)} vs. FIR Wiener Filter {\ith_f(n)}');
plot(index, h_ide);
plot(index, h_fir);
legend( 'Ideal Filter', 'FIR Filter');
grid off;
hold off;
% Plots III
% Plot the ideal filter output and the original signal for the last 100
% samples
index = [401: 1: L];
subplot(2, 2, 3);
hold all;
xlabel('400 \leq {\itn} \leq 500');
ylabel('Sample of Random Sequences');
title('Ideal Filter Output {\its_I(n)} vs. Original Signal {\its(n)}');
plot(index, signalvector_s_cast);
plot(index, output_vector_ide_cast);
legend('Original Signal', 'Ideal Filter Output');
grid off;
hold off;
% Plots IV
% Plot the fir filter output and the original signal for the last 100
% samples
index = [401: 1: L];
subplot(2, 2, 4);
hold all;
xlabel('400 \leq {\itn} \leq 500');
ylabel('Sample of Random Sequences');
title('FIR Filter Output {\its_R(n)} vs. Original Signal {\its(n)}');
plot(index, signalvector_s_cast);
plot(index, output_vector_fir_cast);
legend( 'Original Signal', 'FIR Filter Output');
grid off;
hold off;
clear;
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -