?? mcmc1.m
字號(hào):
% We compare MCMC structure learning with exhaustive enumeration of all dags.
N = 3;
%N = 4;
dag = mk_rnd_dag(N);
ns = 2*ones(1,N);
bnet = mk_bnet(dag, ns);
for i=1:N
bnet.CPD{i} = tabular_CPD(bnet, i);
end
ncases = 100;
data = zeros(N, ncases);
for m=1:ncases
data(:,m) = cell2num(sample_bnet(bnet));
end
dags = mk_all_dags(N);
score = score_dags(data, ns, dags);
post = normalise(exp(score));
[sampled_graphs, accept_ratio] = learn_struct_mcmc(data, ns, 'nsamples', 100, 'burnin', 10);
mcmc_post = mcmc_sample_to_hist(sampled_graphs, dags);
if 0
subplot(2,1,1)
bar(post)
subplot(2,1,2)
bar(mcmc_post)
print(gcf, '-djpeg', '/home/cs/murphyk/public_html/Bayes/Figures/mcmc_post.jpg')
clf
plot(accept_ratio)
print(gcf, '-djpeg', '/home/cs/murphyk/public_html/Bayes/Figures/mcmc_accept.jpg')
end
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -