?? mk_incinerator_bnet.m
字號:
function bnet = mk_incinerator_bnet(ns)
% MK_INCINERATOR_BNET The waste incinerator emissions example from Cowell et al p145
% function bnet = mk_incinerator_bnet(ns)
%
% If ns is omitted, we use the scalars and binary nodes and the original params.
% Otherwise, we use random params of the desired size.
%
% Lauritzen, "Propogation of Probabilities, Means and Variances in Mixed Graphical Association Models",
% JASA 87(420): 1098--1108
% This example is reprinted on p145 of "Probabilistic Networks and Expert Systems",
% Cowell, Dawid, Lauritzen and Spiegelhalter, 1999, Springer.
% For a picture, see http://www.cs.berkeley.edu/~murphyk/Bayes/usage.html#cg_model
% node numbers
F = 1; W = 2; E = 3; B = 4; C = 5; D = 6; Min = 7; Mout = 8; L = 9;
names = {'F', 'W', 'E', 'B', 'C', 'D', 'Min', 'Mout', 'L'};
n = 9;
dnodes = [F W B];
cnodes = mysetdiff(1:n, dnodes);
% node sizes - all cts nodes are scalar, all discrete nodes are binary
if nargin < 1
ns = ones(1, n);
ns(dnodes) = 2;
rnd = 0;
else
rnd = 1;
end
% topology (p 1099, fig 1)
dag = zeros(n);
dag(F,E)=1;
dag(W,[E Min D]) = 1;
dag(E,D)=1;
dag(B,[C D])=1;
dag(D,[L Mout])=1;
dag(Min,Mout)=1;
% params (p 1102)
bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'names', names);
if rnd
for i=dnodes(:)'
bnet.CPD{i} = tabular_CPD(bnet, i);
end
for i=cnodes(:)'
bnet.CPD{i} = gaussian_CPD(bnet, i);
end
else
bnet.CPD{B} = tabular_CPD(bnet, B, 'CPT', [0.85 0.15]); % 1=stable, 2=unstable
bnet.CPD{F} = tabular_CPD(bnet, F, 'CPT', [0.95 0.05]); % 1=intact, 2=defect
bnet.CPD{W} = tabular_CPD(bnet, W, 'CPT', [2/7 5/7]); % 1=industrial, 2=household
bnet.CPD{E} = gaussian_CPD(bnet, E, 'mean', [-3.9 -0.4 -3.2 -0.5], ...
'cov', [0.00002 0.0001 0.00002 0.0001]);
bnet.CPD{D} = gaussian_CPD(bnet, D, 'mean', [6.5 6.0 7.5 7.0], ...
'cov', [0.03 0.04 0.1 0.1], 'weights', [1 1 1 1]);
bnet.CPD{C} = gaussian_CPD(bnet, C, 'mean', [-2 -1], 'cov', [0.1 0.3]);
bnet.CPD{L} = gaussian_CPD(bnet, L, 'mean', 3, 'cov', 0.25, 'weights', -0.5);
bnet.CPD{Min} = gaussian_CPD(bnet, Min, 'mean', [0.5 -0.5], 'cov', [0.01 0.005]);
bnet.CPD{Mout} = gaussian_CPD(bnet, Mout, 'mean', 0, 'cov', 0.002, 'weights', [1 1]);
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -