?? sample1.m
字號:
% Check sampling on a mixture of experts model
%
% X \
% | |
% Q |
% | /
% Y
%
% where all arcs point down.
% We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian.
% Q is hidden, X and Y are observed.
X = 1;
Q = 2;
Y = 3;
dag = zeros(3,3);
dag(X,[Q Y]) = 1;
dag(Q,Y) = 1;
ns = [1 2 2];
dnodes = [2];
bnet = mk_bnet(dag, ns, dnodes);
x = 0.5;
bnet.CPD{1} = root_CPD(bnet, 1, x);
bnet.CPD{2} = softmax_CPD(bnet, 2);
bnet.CPD{3} = gaussian_CPD(bnet, 3);
data_case = sample_bnet(bnet, 'evidence', {0.8, [], []})
ll = log_lik_complete(bnet, data_case)
data_case = sample_bnet(bnet, 'evidence', {-11, [], []})
ll = log_lik_complete(bnet, data_case)
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -