?? set_fields.m
字號(hào):
function CPD = set_fields(CPD, varargin)
% SET_PARAMS Set the parameters (fields) for a gaussian_CPD object
% CPD = set_params(CPD, name/value pairs)
%
% The following optional arguments can be specified in the form of name/value pairs:
%
% mean - mu(:,i) is the mean given Q=i
% cov - Sigma(:,:,i) is the covariance given Q=i
% weights - W(:,:,i) is the regression matrix given Q=i
% cov_type - if 'diag', Sigma(:,:,i) is diagonal
% tied_cov - if 1, we constrain Sigma(:,:,i) to be the same for all i
% clamp_mean - if 1, we do not adjust mu(:,i) during learning
% clamp_cov - if 1, we do not adjust Sigma(:,:,i) during learning
% clamp_weights - if 1, we do not adjust W(:,:,i) during learning
% clamp - if 1, we do not adjust any params
% cov_prior_weight - weight given to I prior for estimating Sigma
% cov_prior_entropic - if 1, we also use an entropic prior for Sigma [0]
%
% e.g., CPD = set_params(CPD, 'mean', [0;0])
args = varargin;
nargs = length(args);
for i=1:2:nargs
switch args{i},
case 'mean', CPD.mean = args{i+1};
case 'cov', CPD.cov = args{i+1};
case 'weights', CPD.weights = args{i+1};
case 'cov_type', CPD.cov_type = args{i+1};
%case 'tied_cov', CPD.tied_cov = strcmp(args{i+1}, 'yes');
case 'tied_cov', CPD.tied_cov = args{i+1};
case 'clamp_mean', CPD.clamped_mean = args{i+1};
case 'clamp_cov', CPD.clamped_cov = args{i+1};
case 'clamp_weights', CPD.clamped_weights = args{i+1};
case 'clamp', clamp = args{i+1};
CPD.clamped_mean = clamp;
CPD.clamped_cov = clamp;
CPD.clamped_weights = clamp;
case 'cov_prior_weight', CPD.cov_prior_weight = args{i+1};
case 'cov_prior_entropic', CPD.cov_prior_entropic = args{i+1};
otherwise,
error(['invalid argument name ' args{i}]);
end
end
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -