?? gaussian_cpd.m
字號:
function CPD = gaussian_CPD(bnet, self, varargin)
% GAUSSIAN_CPD Make a conditional linear Gaussian distrib.
%
% CPD = gaussian_CPD(bnet, node, ...) will create a CPD with random parameters,
% where node is the number of a node in this equivalence class.
% To define this CPD precisely, call the continuous (cts) parents (if any) X,
% the discrete parents (if any) Q, and this node Y. Then the distribution on Y is:
% - no parents: Y ~ N(mu, Sigma)
% - cts parents : Y|X=x ~ N(mu + W x, Sigma)
% - discrete parents: Y|Q=i ~ N(mu(i), Sigma(i))
% - cts and discrete parents: Y|X=x,Q=i ~ N(mu(i) + W(i) x, Sigma(i))
%
% The list below gives optional arguments [default value in brackets].
% (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y) and Q = prod(ns(Q)).)
% Parameters will be reshaped to the right size if necessary.
%
% mean - mu(:,i) is the mean given Q=i [ randn(Y,Q) ]
% cov - Sigma(:,:,i) is the covariance given Q=i [ repmat(100*eye(Y,Y), [1 1 Q]) ]
% weights - W(:,:,i) is the regression matrix given Q=i [ randn(Y,X,Q) ]
% cov_type - if 'diag', Sigma(:,:,i) is diagonal [ 'full' ]
% tied_cov - if 1, we constrain Sigma(:,:,i) to be the same for all i [0]
% clamp_mean - if 1, we do not adjust mu(:,i) during learning [0]
% clamp_cov - if 1, we do not adjust Sigma(:,:,i) during learning [0]
% clamp_weights - if 1, we do not adjust W(:,:,i) during learning [0]
% cov_prior_weight - weight given to I prior for estimating Sigma [0.01]
% cov_prior_entropic - if 1, we also use an entropic prior for Sigma [0]
%
% e.g., CPD = gaussian_CPD(bnet, i, 'mean', [0; 0], 'clamp_mean', 1)
if nargin==0
% This occurs if we are trying to load an object from a file.
CPD = init_fields;
clamp = 0;
CPD = class(CPD, 'gaussian_CPD', generic_CPD(clamp));
return;
elseif isa(bnet, 'gaussian_CPD')
% This might occur if we are copying an object.
CPD = bnet;
return;
end
CPD = init_fields;
CPD = class(CPD, 'gaussian_CPD', generic_CPD(0));
args = varargin;
ns = bnet.node_sizes;
ps = parents(bnet.dag, self);
dps = myintersect(ps, bnet.dnodes);
cps = myintersect(ps, bnet.cnodes);
fam_sz = ns([ps self]);
CPD.self = self;
CPD.sizes = fam_sz;
% Figure out which (if any) of the parents are discrete, and which cts, and how big they are
% dps = discrete parents, cps = cts parents
CPD.cps = find_equiv_posns(cps, ps); % cts parent index
CPD.dps = find_equiv_posns(dps, ps);
ss = fam_sz(end);
psz = fam_sz(1:end-1);
dpsz = prod(psz(CPD.dps));
cpsz = sum(psz(CPD.cps));
% set default params
CPD.mean = randn(ss, dpsz);
CPD.cov = 100*repmat(eye(ss), [1 1 dpsz]);
CPD.weights = randn(ss, cpsz, dpsz);
CPD.cov_type = 'full';
CPD.tied_cov = 0;
CPD.clamped_mean = 0;
CPD.clamped_cov = 0;
CPD.clamped_weights = 0;
CPD.cov_prior_weight = 0.01;
CPD.cov_prior_entropic = 0;
nargs = length(args);
if nargs > 0
CPD = set_fields(CPD, args{:});
end
% Make sure the matrices have 1 dimension per discrete parent.
% Bug fix due to Xuejing Sun 3/6/01
CPD.mean = myreshape(CPD.mean, [ss ns(dps)]);
CPD.cov = myreshape(CPD.cov, [ss ss ns(dps)]);
CPD.weights = myreshape(CPD.weights, [ss cpsz ns(dps)]);
% Precompute indices into block structured matrices
% to speed up CPD_to_lambda_msg and CPD_to_pi
cpsizes = CPD.sizes(CPD.cps);
CPD.cps_block_ndx = cell(1, length(cps));
for i=1:length(cps)
CPD.cps_block_ndx{i} = block(i, cpsizes);
end
%%%%%%%%%%%
% Learning stuff
% expected sufficient statistics
CPD.Wsum = zeros(dpsz,1);
CPD.WYsum = zeros(ss, dpsz);
CPD.WXsum = zeros(cpsz, dpsz);
CPD.WYYsum = zeros(ss, ss, dpsz);
CPD.WXXsum = zeros(cpsz, cpsz, dpsz);
CPD.WXYsum = zeros(cpsz, ss, dpsz);
% For BIC
CPD.nsamples = 0;
switch CPD.cov_type
case 'full',
% since symmetric
%ncov_params = ss*(ss-1)/2;
ncov_params = ss*(ss+1)/2;
case 'diag',
ncov_params = ss;
otherwise
error(['unrecognized cov_type ' cov_type]);
end
% params = weights + mean + cov
if CPD.tied_cov
CPD.nparams = ss*cpsz*dpsz + ss*dpsz + ncov_params;
else
CPD.nparams = ss*cpsz*dpsz + ss*dpsz + dpsz*ncov_params;
end
% for speeding up maximize_params
CPD.useC = exist('rep_mult');
clamped = CPD.clamped_mean & CPD.clamped_cov & CPD.clamped_weights;
CPD = set_clamped(CPD, clamped);
%%%%%%%%%%%
function CPD = init_fields()
% This ensures we define the fields in the same order
% no matter whether we load an object from a file,
% or create it from scratch. (Matlab requires this.)
CPD.self = [];
CPD.sizes = [];
CPD.cps = [];
CPD.dps = [];
CPD.mean = [];
CPD.cov = [];
CPD.weights = [];
CPD.clamped_mean = [];
CPD.clamped_cov = [];
CPD.clamped_weights = [];
CPD.cov_type = [];
CPD.tied_cov = [];
CPD.Wsum = [];
CPD.WYsum = [];
CPD.WXsum = [];
CPD.WYYsum = [];
CPD.WXXsum = [];
CPD.WXYsum = [];
CPD.nsamples = [];
CPD.nparams = [];
CPD.cov_prior_weight = [];
CPD.cov_prior_entropic = [];
CPD.useC = [];
CPD.cps_block_ndx = [];
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -