亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? gaussian_cpd.m

?? 貝葉斯網絡的matlab實現。可以創建貝葉斯網絡、訓練模型
?? M
字號:
function CPD = gaussian_CPD(varargin)
% GAUSSIAN_CPD Make a conditional linear Gaussian distrib.
%
% To define this CPD precisely, call the continuous (cts) parents (if any) X,
% the discrete parents (if any) Q, and this node Y. Then the distribution on Y is:
% - no parents: Y ~ N(mu, Sigma)
% - cts parents : Y|X=x ~ N(mu + W x, Sigma)
% - discrete parents: Y|Q=i ~ N(mu(i), Sigma(i))
% - cts and discrete parents: Y|X=x,Q=i ~ N(mu(i) + W(i) x, Sigma(i))
%
% CPD = gaussian_CPD(bnet, node, ...) will create a CPD with random parameters,
% where node is the number of a node in this equivalence class.
%
% The list below gives optional arguments [default value in brackets].
% (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y) and Q = prod(ns(Q)).)
%
% mean       - mu(:,i) is the mean given Q=i [ randn(Y,Q) ]
% cov        - Sigma(:,:,i) is the covariance given Q=i [ repmat(eye(Y,Y), [1 1 Q]) ]
% weights    - W(:,:,i) is the regression matrix given Q=i [ randn(Y,X,Q) ]
% cov_type   - if 'diag', Sigma(:,:,i) is diagonal [ 'full' ]
% tied_cov   - if 1, we constrain Sigma(:,:,i) to be the same for all i [0]
% clamp_mean - if 1, we do not adjust mu(:,i) during learning [0]
% clamp_cov  - if 1, we do not adjust Sigma(:,:,i) during learning [0]
% clamp_weights - if 1, we do not adjust W(:,:,i) during learning [0]
% cov_prior_weight - weight given to I prior for estimating Sigma [0.01]
%
% e.g., CPD = gaussian_CPD(bnet, i, 'mean', [0; 0], 'clamp_mean', 'yes')
%
% For backwards compatibility with BNT2, you can also specify the parameters in the following order
%   CPD = gaussian_CPD(bnet, self, mu, Sigma, W, cov_type, tied_cov, clamp_mean, clamp_cov, clamp_weight)
%
% Sometimes it is useful to create an "isolated" CPD, without needing to pass in a bnet.
% In this case, you must specify the discrete and cts parents (dps, cps) and the family sizes, followed
% by the optional arguments above:
%   CPD = gaussian_CPD('self', i, 'dps', dps, 'cps', cps, 'sz', fam_size, ...)


if nargin==0
  % This occurs if we are trying to load an object from a file.
  CPD = init_fields;
  clamp = 0;
  CPD = class(CPD, 'gaussian_CPD', generic_CPD(clamp));
  return;
elseif isa(varargin{1}, 'gaussian_CPD')
  % This might occur if we are copying an object.
  CPD = varargin{1};
  return;
end
CPD = init_fields;
 
CPD = class(CPD, 'gaussian_CPD', generic_CPD(0));


% parse mandatory arguments
if ~isstr(varargin{1}) % pass in bnet
  bnet = varargin{1};
  self = varargin{2};
  args = varargin(3:end);
  ns = bnet.node_sizes;
  ps = parents(bnet.dag, self);
  dps = myintersect(ps, bnet.dnodes);
  cps = myintersect(ps, bnet.cnodes);
  fam_sz = ns([ps self]);
else
  disp('parsing new style')
  for i=1:2:length(varargin)
    switch varargin{i},
     case 'self', self = varargin{i+1}; 
     case 'dps',  dps = varargin{i+1};
     case 'cps',  cps = varargin{i+1};
     case 'sz',   fam_sz = varargin{i+1};
    end
  end
  ps = myunion(dps, cps);
  args = varargin;
end

CPD.self = self;
CPD.sizes = fam_sz;

% Figure out which (if any) of the parents are discrete, and which cts, and how big they are
% dps = discrete parents, cps = cts parents
CPD.cps = find_equiv_posns(cps, ps); % cts parent index
CPD.dps = find_equiv_posns(dps, ps);
ss = fam_sz(end);
psz = fam_sz(1:end-1);
dpsz = prod(psz(CPD.dps));
cpsz = sum(psz(CPD.cps));

% set default params
CPD.mean = randn(ss, dpsz);
CPD.cov = 100*repmat(eye(ss), [1 1 dpsz]);    
CPD.weights = randn(ss, cpsz, dpsz);
CPD.cov_type = 'full';
CPD.tied_cov = 0;
CPD.clamped_mean = 0;
CPD.clamped_cov = 0;
CPD.clamped_weights = 0;
CPD.cov_prior_weight = 0.01;

nargs = length(args);
if nargs > 0
  if ~isstr(args{1})
    % gaussian_CPD(bnet, self, mu, Sigma, W, cov_type, tied_cov, clamp_mean, clamp_cov, clamp_weights)
    if nargs >= 1 & ~isempty(args{1}), CPD.mean = args{1}; end
    if nargs >= 2 & ~isempty(args{2}), CPD.cov = args{2}; end
    if nargs >= 3 & ~isempty(args{3}), CPD.weights = args{3}; end
    if nargs >= 4 & ~isempty(args{4}), CPD.cov_type = args{4}; end
    if nargs >= 5 & ~isempty(args{5}) & strcmp(args{5}, 'tied'), CPD.tied_cov = 1; end
    if nargs >= 6 & ~isempty(args{6}), CPD.clamped_mean = 1; end
    if nargs >= 7 & ~isempty(args{7}), CPD.clamped_cov = 1; end
    if nargs >= 8 & ~isempty(args{8}), CPD.clamped_weights = 1; end
  else
    CPD = set_fields(CPD, args{:});
  end
end

% Make sure the matrices have 1 dimension per discrete parent.
% Bug fix due to Xuejing Sun 3/6/01
CPD.mean = myreshape(CPD.mean, [ss ns(dps)]);
CPD.cov = myreshape(CPD.cov, [ss ss ns(dps)]);
CPD.weights = myreshape(CPD.weights, [ss cpsz ns(dps)]);
  
CPD.init_cov = CPD.cov;  % we reset to this if things go wrong during learning

% expected sufficient statistics 
CPD.Wsum = zeros(dpsz,1);
CPD.WYsum = zeros(ss, dpsz);
CPD.WXsum = zeros(cpsz, dpsz);
CPD.WYYsum = zeros(ss, ss, dpsz);
CPD.WXXsum = zeros(cpsz, cpsz, dpsz);
CPD.WXYsum = zeros(cpsz, ss, dpsz);

% For BIC
CPD.nsamples = 0;
switch CPD.cov_type
  case 'full',
    ncov_params = ss*(ss-1)/2; % since symmetric (and positive definite)
  case 'diag',
    ncov_params = ss;
  otherwise
    error(['unrecognized cov_type ' cov_type]);
end
% params = weights + mean + cov
if CPD.tied_cov
  CPD.nparams = ss*cpsz*dpsz + ss*dpsz + ncov_params;
else
  CPD.nparams = ss*cpsz*dpsz + ss*dpsz + dpsz*ncov_params;
end



clamped = CPD.clamped_mean & CPD.clamped_cov & CPD.clamped_weights;
CPD = set_clamped(CPD, clamped);

%%%%%%%%%%%

function CPD = init_fields()
% This ensures we define the fields in the same order 
% no matter whether we load an object from a file,
% or create it from scratch. (Matlab requires this.)

CPD.self = [];
CPD.sizes = [];
CPD.cps = [];
CPD.dps = [];
CPD.mean = [];
CPD.cov = [];
CPD.weights = [];
CPD.clamped_mean = [];
CPD.clamped_cov = [];
CPD.clamped_weights = [];
CPD.init_cov = [];
CPD.cov_type = [];
CPD.tied_cov = [];
CPD.Wsum = [];
CPD.WYsum = [];
CPD.WXsum = [];
CPD.WYYsum = [];
CPD.WXXsum = [];
CPD.WXYsum = [];
CPD.nsamples = [];
CPD.nparams = [];            
CPD.cov_prior_weight = [];

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品亚洲aⅴ乱码一区二区三区| 一区二区三区在线免费| 欧美嫩在线观看| 色婷婷精品久久二区二区蜜臂av| 成人av第一页| 9l国产精品久久久久麻豆| 成人教育av在线| av电影天堂一区二区在线| av亚洲精华国产精华| 91视频国产观看| 欧美日韩成人综合天天影院| 欧美色精品天天在线观看视频| 欧美色图片你懂的| 欧美欧美欧美欧美首页| 精品不卡在线视频| 国产精品久久福利| 亚洲一二三四久久| 麻豆成人久久精品二区三区红 | 91在线播放网址| 91国偷自产一区二区开放时间| 欧美三级中文字幕在线观看| 欧美一区二区三区喷汁尤物| 26uuu亚洲| 亚洲精品少妇30p| 免费在线观看日韩欧美| 国产精品一二三四区| 色中色一区二区| 日韩欧美国产1| 中文字幕一区二区视频| 亚洲aⅴ怡春院| 成人成人成人在线视频| 在线播放91灌醉迷j高跟美女| 欧美精品一区二区三区很污很色的| 国产精品久久久一本精品| 亚洲r级在线视频| 国产成人精品在线看| 色欧美日韩亚洲| 精品日韩欧美一区二区| 亚洲精品免费一二三区| 黄页视频在线91| 欧美性猛片aaaaaaa做受| 精品免费99久久| 香蕉成人伊视频在线观看| 国产精品99久久久久久宅男| 欧美高清一级片在线| 中文字幕日韩精品一区| 国产一区二区三区高清播放| 欧美性受极品xxxx喷水| 综合欧美亚洲日本| 国产精品66部| 欧美电影免费提供在线观看| 亚洲成人中文在线| 色综合一个色综合| 国产精品久久久久久久久搜平片| 日韩电影一区二区三区四区| 色狠狠色噜噜噜综合网| 亚洲国产精品激情在线观看| 国产一区视频导航| 91精品国产福利在线观看| 亚洲国产一二三| 日本精品免费观看高清观看| 亚洲国产高清不卡| 国产精品99久久久久久久女警| 欧美一区二区三区色| 日韩av一区二区三区四区| 欧美一区二区视频在线观看2020| 亚洲综合久久av| 91国产丝袜在线播放| 亚洲精品中文字幕乱码三区| 成人午夜视频免费看| 国产精品天美传媒| 成人毛片视频在线观看| 国产精品午夜久久| www.99精品| 亚洲欧美成aⅴ人在线观看| 99久久久久免费精品国产 | 欧美日韩国产综合久久| 天堂久久一区二区三区| 911精品国产一区二区在线| 亚洲成人自拍偷拍| 精品少妇一区二区三区在线视频| 日本成人在线一区| 久久久99久久精品欧美| 国产99久久久久| 综合色中文字幕| 欧美性大战久久久久久久| 日韩精品久久久久久| 精品国产91九色蝌蚪| 夫妻av一区二区| 中文字幕一区二区在线播放| 欧美伊人久久大香线蕉综合69 | 欧美日韩国产a| 久久国产综合精品| 国产欧美一区在线| 91在线视频播放地址| 亚洲成人免费视频| 精品国免费一区二区三区| 国产成人在线视频免费播放| 国产精品久久久久久久久免费樱桃 | 亚洲mv大片欧洲mv大片精品| 欧美一区二区三区在线观看视频 | 麻豆免费精品视频| 国产人妖乱国产精品人妖| 91丨九色丨蝌蚪富婆spa| 亚洲高清免费一级二级三级| 精品国产乱码久久| 91亚洲精品乱码久久久久久蜜桃| 亚洲午夜在线电影| 国产日韩视频一区二区三区| 在线视频综合导航| 国产乱理伦片在线观看夜一区| 亚洲欧洲一区二区在线播放| 在线91免费看| 97国产一区二区| 久久成人免费网| 亚洲视频1区2区| 2024国产精品视频| 欧美色精品在线视频| 成人午夜免费视频| 久久99热这里只有精品| 亚洲黄色性网站| 久久久久亚洲蜜桃| 欧美肥妇free| 一本大道久久精品懂色aⅴ| 老鸭窝一区二区久久精品| 亚洲男同性恋视频| 中文字幕乱码亚洲精品一区| 欧美电影影音先锋| 欧美综合天天夜夜久久| 福利一区福利二区| 久久不见久久见中文字幕免费| 一区二区三区在线看| 国产精品视频一二| 国产日韩欧美不卡在线| 欧美成人乱码一区二区三区| 欧美午夜免费电影| eeuss鲁片一区二区三区| 国产精品18久久久| 国产麻豆欧美日韩一区| 蜜桃av一区二区| 亚洲1区2区3区视频| 亚洲国产综合色| 亚洲欧美另类小说| 亚洲欧美激情视频在线观看一区二区三区| 久久亚洲影视婷婷| 久久亚洲影视婷婷| 精品少妇一区二区三区免费观看| 欧美老女人第四色| 欧美日韩精品免费观看视频| 欧美日韩一区不卡| 欧美日本国产一区| 制服.丝袜.亚洲.中文.综合| 欧美日韩免费电影| 欧美一区二区啪啪| 日韩美一区二区三区| 日韩三区在线观看| 精品国产伦一区二区三区观看方式 | 欧美亚男人的天堂| 欧美日韩精品一区二区| 7777精品伊人久久久大香线蕉的| 欧美色倩网站大全免费| 欧美日韩高清影院| 日韩欧美在线不卡| 久久亚洲一级片| 欧美激情综合五月色丁香| 亚洲色图制服诱惑 | 91浏览器入口在线观看| 在线观看一区二区视频| 欧美精品v日韩精品v韩国精品v| 91精品国产一区二区三区香蕉| 日韩欧美国产一区二区三区| 欧美精品一区二区三区在线| 国产日韩欧美不卡| 亚洲成人av资源| 国产一区欧美二区| 日本韩国欧美一区二区三区| 6080国产精品一区二区| 久久午夜羞羞影院免费观看| 国产精品狼人久久影院观看方式| 亚洲国产一区视频| 国模一区二区三区白浆| 一本大道av伊人久久综合| 欧美精品自拍偷拍| 国产精品久久久久三级| 日韩av电影免费观看高清完整版 | 一区二区高清视频在线观看| 五月婷婷综合激情| 国产精品888| 欧美日韩卡一卡二| 国产欧美一区二区在线观看| 亚洲欧美偷拍卡通变态| 久久国产精品免费| 日本乱人伦一区| 国产婷婷色一区二区三区四区| 亚洲精品久久嫩草网站秘色| 狠狠色综合日日| 欧美另类高清zo欧美| 国产精品美日韩| 久久成人av少妇免费| 欧美日韩一区二区三区高清|