?? update_ess.m
字號:
function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv)
% UPDATE_ESS Update the Expected Sufficient Statistics of a Gaussian node
% function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv)
%if nargin < 6
% hidden_bitv = zeros(1, max(fmarginal.domain));
% hidden_bitv(find(isempty(evidence)))=1;
%end
dom = fmarginal.domain;
self = dom(end);
ps = dom(1:end-1);
hidden_self = hidden_bitv(self);
cps = myintersect(ps, cnodes);
dps = mysetdiff(ps, cps);
hidden_cps = all(hidden_bitv(cps));
hidden_dps = all(hidden_bitv(dps));
CPD.nsamples = CPD.nsamples + 1;
[ss cpsz dpsz] = size(CPD.weights); % ss = self size
% Let X be the cts parent (if any), Y be the cts child (self).
if ~hidden_self & (isempty(cps) | ~hidden_cps) & hidden_dps % all cts nodes are observed, all discrete nodes are hidden
% Since X and Y are observed, SYY = 0, SXX = 0, SXY = 0
% Since discrete parents are hidden, we do not need to add evidence to w.
w = fmarginal.T(:);
CPD.Wsum = CPD.Wsum + w;
y = evidence{self};
Cyy = y*y';
if ~CPD.useC
W = repmat(w(:)',ss,1); % W(y,i) = w(i)
W2 = repmat(reshape(W, [ss 1 dpsz]), [1 ss 1]); % W2(x,y,i) = w(i)
CPD.WYsum = CPD.WYsum + W .* repmat(y(:), 1, dpsz);
CPD.WYYsum = CPD.WYYsum + W2 .* repmat(reshape(Cyy, [ss ss 1]), [1 1 dpsz]);
else
W = w(:)';
W2 = reshape(W, [1 1 dpsz]);
CPD.WYsum = CPD.WYsum + rep_mult(W, y(:), size(CPD.WYsum));
CPD.WYYsum = CPD.WYYsum + rep_mult(W2, Cyy, size(CPD.WYYsum));
end
if cpsz > 0 % X exists
x = cat(1, evidence{cps}); x = x(:);
Cxx = x*x';
Cxy = x*y';
if ~CPD.useC
CPD.WXsum = CPD.WXsum + W .* repmat(x(:), 1, dpsz);
CPD.WXXsum = CPD.WXXsum + W2 .* repmat(reshape(Cxx, [cpsz cpsz 1]), [1 1 dpsz]);
CPD.WXYsum = CPD.WXYsum + W2 .* repmat(reshape(Cxy, [cpsz ss 1]), [1 1 dpsz]);
else
CPD.WXsum = CPD.WXsum + rep_mult(W, x(:), size(CPD.WXsum));
CPD.WXXsum = CPD.WXXsum + rep_mult(W2, Cxx, size(CPD.WXXsum));
CPD.WXYsum = CPD.WXYsum + rep_mult(W2, Cxy, size(CPD.WXYsum));
end
end
return;
end
% general (non-vectorized) case
fullm = add_evidence_to_gmarginal(fmarginal, evidence, ns, cnodes); % slow!
if dpsz == 1 % no discrete parents
w = 1;
else
w = fullm.T(:);
end
CPD.Wsum = CPD.Wsum + w;
xi = 1:cpsz;
yi = (cpsz+1):(cpsz+ss);
for i=1:dpsz
muY = fullm.mu(yi, i);
SYY = fullm.Sigma(yi, yi, i);
CPD.WYsum(:,i) = CPD.WYsum(:,i) + w(i)*muY;
CPD.WYYsum(:,:,i) = CPD.WYYsum(:,:,i) + w(i)*(SYY + muY*muY'); % E[X Y] = Cov[X,Y] + E[X] E[Y]
if cpsz > 0
muX = fullm.mu(xi, i);
SXX = fullm.Sigma(xi, xi, i);
SXY = fullm.Sigma(xi, yi, i);
CPD.WXsum(:,i) = CPD.WXsum(:,i) + w(i)*muX;
CPD.WXXsum(:,:,i) = CPD.WXXsum(:,:,i) + w(i)*(SXX + muX*muX');
CPD.WXYsum(:,:,i) = CPD.WXYsum(:,:,i) + w(i)*(SXY + muX*muY');
end
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -