?? learn_params.m
字號:
function CPD = learn_params(CPD, fam, data, ns, cnodes, varargin)
% LEARN_PARAMS Construct classification/regression tree given complete data
% CPD = learn_params(CPD, fam, data, ns, cnodes)
%
% fam(i) is the node id of the i-th node in the family of nodes, self node is the last one
% data(i,m) is the value of node i in case m (can be cell array).
% ns(i) is the node size for the i-th node in the whold bnet
% cnodes(i) is the node id for the i-th continuous node in the whole bnet
%
% The following optional arguments can be specified in the form of name/value pairs:
% stop_cases: for early stop (pruning). A node is not split if it has less than k cases. default is 0.
% min_gain: for early stop (pruning).
% For discrete output: A node is not split when the gain of best split is less than min_gain. default is 0.
% For continuous (cts) outpt: A node is not split when the gain of best split is less than min_gain*score(root)
% (we denote it cts_min_gain). default is 0.006
% %%%%%%%%%%%%%%%%%%%Struction definition of dtree_CPD.tree%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% tree.num_node the last position in tree.nodes array for adding new nodes,
% it is not always same to number of nodes in a tree, because some position in the
% tree.nodes array can be set to unused (e.g. in tree pruning)
% tree.nodes is the array of nodes in the tree plus some unused nodes.
% tree.nodes(1) is the root for the tree.
%
% Below is the attributes for each node
% tree.nodes(i).used; % flag this node is used (0 means node not used, it can be removed from tree to save memory)
% tree.nodes(i).is_leaf; % if 1 means this node is a leaf, if 0 not a leaf.
% tree.nodes(i).children; % children(i) is the node number in tree.nodes array for the i-th child node
% tree.nodes(i).split_id; % the attribute id used to split this node
% tree.nodes(i).split_threshhold; % the threshhold for continuous attribute to split this node
% %%%%%attributes specially for classification tree (discrete output)
% tree.nodes(i).probs % probs(i) is the prob for i-th value of class node
% % For three output class, the probs = [0.9 0.1 0.0] means the probability of
% % class 1 is 0.9, for class 2 is 0.1, for class 3 is 0.0.
% %%%%%attributes specially for regression tree (continuous output)
% tree.nodes(i).mean % mean output value for this node
% tree.nodes(i).std % standard deviation for output values in this node
%
% Author: yimin.zhang@intel.com
% Last updated: Jan. 19, 2002
% Want list:
% (1) more efficient for cts attributes: get the values of cts attributes at first (the begining of build_tree function), then doing bi_search in finding threshhold
% (2) pruning classification tree using Pessimistic Error Pruning
% (3) bi_search for strings (used for transform data to BNT format)
global tree %tree must be global so that it can be accessed in recursive slitting function
global cts_min_gain
tree=[]; % clear the tree
tree.num_node=0;
cts_min_gain=0;
stop_cases=0;
min_gain=0;
args = varargin;
nargs = length(args);
if (nargs>0)
if isstr(args{1})
for i=1:2:nargs
switch args{i},
case 'stop_cases', stop_cases = args{i+1};
case 'min_gain', min_gain = args{i+1};
end
end
else
error(['error in input parameters']);
end
end
if iscell(data)
local_data = cell2num(data(fam,:));
else
local_data = data(fam, :);
end
%counts = compute_counts(local_data, CPD.sizes);
%CPD.CPT = mk_stochastic(counts + CPD.prior); % bug fix 11/5/01
node_types = zeros(1,size(ns,2)); %all nodes are disrete
node_types(cnodes)=1;
%make the data be BNT compliant (values for discrete nodes are from 1-n, here n is the node size)
%trans_data=transform_data(local_data,'tmp.dat',[]); %here no cts nodes
build_dtree (CPD, local_data, ns(fam), node_types(fam),stop_cases,min_gain);
%CPD.tree=copy_tree(tree);
CPD.tree=tree; %copy the tree constructed to CPD
function new_tree = copy_tree(tree)
% copy the tree to new_tree
new_tree.num_node=tree.num_node;
new_tree.root = tree.root;
for i=1:tree.num_node
new_tree.nodes(i)=tree.nodes(i);
end
function build_dtree (CPD, fam_ev, node_sizes, node_types,stop_cases,min_gain)
global tree
global cts_min_gain
tree.num_node=0; %the current number of nodes in the tree
tree.root=1;
T = 1:size(fam_ev,2) ; %all cases
candidate_attrs = 1:(size(node_sizes,2)-1); %all attributes
node_id=1; %the root node
lastnode=size(node_sizes,2); %the last element in all nodes is the dependent variable (category node)
num_cat=node_sizes(lastnode);
% get minimum gain for cts output (used in stop splitting)
if (node_types(size(fam_ev,1))==1) %cts output
N = size(fam_ev,2);
output_id = size(fam_ev,1);
cases_T = fam_ev(output_id,:); %get all the output value for cases T
std_T = std(cases_T);
avg_y_T = mean(cases_T);
sqr_T = cases_T - avg_y_T;
cts_min_gain = min_gain*(sum(sqr_T.*sqr_T)/N); % min_gain * (R(root) = 1/N * SUM(y-avg_y)^2)
end
split_dtree (CPD, fam_ev, node_sizes, node_types, stop_cases,min_gain, T, candidate_attrs, num_cat);
% pruning method
% (1) Restrictions on minimum node size: A node is not split if it has smaller than k cases.
% (2) Threshholds on impurity: a threshhold is imposed on the splitting test score. Threshhold can be
% imposed on local goodness measure (the gain_ratio of a node) or global goodness.
% (3) Mininum Error Pruning (MEP), (no need pruning set)
% Prune if static error<=backed-up error
% Static error at node v: e(v) = (Nc + 1)/(N+k) (laplace estimate, prior for each class equal)
% here N is # of all examples, Nc is # of majority class examples, k is number of classes
% Backed-up error at node v: (Ti is the i-th subtree root)
% E(T) = Sum_1_to_n(pi*e(Ti))
% (4) Pessimistic Error Pruning (PEP), used in Quilan C4.5 (no need pruning set, efficient because of pruning top-down)
% Probability of error (apparent error rate)
% q = (N-Nc+0.5)/N
% where N=#examples, Nc=#examples in majority class
% Error of a node v (if pruned) q(v)= (Nv- Nc,v + 0.5)/Nv
% Error of a subtree q(T)= Sum_of_l_leaves(Nl - Nc,l + 0.5)/Sum_of_l_leaves(Nl)
% Prune if q(v)<=q(T)
%
% Implementation statuts:
% (1)(2) has been implemented as the input parameters of learn_params.
% (4) is implemented in this function
function pruning(fam_ev,node_sizes,node_types)
% PRUNING prune the constructed tree using PEP
% pruning(fam_ev,node_sizes,node_types)
%
% fam_ev(i,j) is the value of attribute i in j-th training cases (for whole tree), the last row is for the class label (self_ev)
% node_sizes(i) is the node size for the i-th node in the family
% node_types(i) is the node type for the i-th node in the family, 0 for disrete node, 1 for continous node
% the global parameter 'tree' is for storing the input tree and the pruned tree
function split_T = split_cases(fam_ev,node_sizes,node_types,T,node_i, threshhold)
% SPLIT_CASES split the cases T according to values of node_i in the family
% split_T = split_cases(fam_ev,node_sizes,node_types,T,node_i)
%
% fam_ev(i,j) is the value of attribute i in j-th training cases (for whole tree), the last row is for the class label (self_ev)
% node_sizes(i) is the node size for the i-th node in the family
% node_types(i) is the node type for the i-th node in the family, 0 for disrete node, 1 for continous node
% node_i is the attribute we need to split
if (node_types(node_i)==0) %discrete attribute
%init the subsets of T
split_T = cell(1,node_sizes(node_i)); %T will be separated into |node_size of i| subsets according to different values of node i
for i=1:node_sizes(node_i) % here we assume that the value of an attribute is 1:node_size
split_T{i}=zeros(1,0);
end
size_t = size(T,2);
for i=1:size_t
case_id = T(i);
%put this case into one subset of split_T according to its value for node_i
value = fam_ev(node_i,case_id);
pos = size(split_T{value},2)+1;
split_T{value}(pos)=case_id; % here assumes the value of an attribute is 1:node_size
end
else %continuous attribute
%init the subsets of T
split_T = cell(1,2); %T will be separated into 2 subsets (<=threshhold) (>threshhold)
for i=1:2
split_T{i}=zeros(1,0);
end
size_t = size(T,2);
for i=1:size_t
case_id = T(i);
%put this case into one subset of split_T according to its value for node_i
value = fam_ev(node_i,case_id);
subset_num=1;
if (value>threshhold)
subset_num=2;
end
pos = size(split_T{subset_num},2)+1;
split_T{subset_num}(pos)=case_id;
end
end
function new_node = split_dtree (CPD, fam_ev, node_sizes, node_types, stop_cases, min_gain, T, candidate_attrs, num_cat)
% SPLIT_TREE Split the tree at node node_id with cases T (actually it is just indexes to family evidences).
% new_node = split_dtree (fam_ev, node_sizes, node_types, T, node_id, num_cat, method)
%
% fam_ev(i,j) is the value of attribute i in j-th training cases (for whole tree), the last row is for the class label (self_ev)
% node_sizes{i} is the node size for the i-th node in the family
% node_types{i} is the node type for the i-th node in the family, 0 for disrete node, 1 for continous node
% stop_cases is the threshold of number of cases to stop slitting
% min_gain is the minimum gain need to split a node
% T(i) is the index of i-th cases in current decision tree node, we need split it further
% candidate_attrs(i) the node id for the i-th attribute that still need to be considered as split attribute
%%%%% node_id is the index of current node considered for a split
% num_cat is the number of output categories for the decision tree
% output:
% new_node is the new node created
global tree
global cts_min_gain
size_fam = size(fam_ev,1); %number of family size
output_type = node_types(size_fam); %the type of output for the tree (0 is discrete, 1 is continuous)
size_attrs = size(candidate_attrs,2); %number of candidate attributes
size_t = size(T,2); %number of training cases in this tree node
%(1)computeFrequenceyForEachClass(T)
if (output_type==0) %discrete output
class_freqs = zeros(1,num_cat);
for i=1:size_t
case_id = T(i);
case_class = fam_ev(size_fam,case_id); %get the class label for this case
class_freqs(case_class)=class_freqs(case_class)+1;
end
else %cts output
N = size(fam_ev,2);
cases_T = fam_ev(size(fam_ev,1),T); %get the output value for cases T
std_T = std(cases_T);
end
%(2) if OneClass (for discrete output) or same output value (for cts output) or Class With #examples < stop_cases
% return a leaf;
% create a decision node N;
% get majority class in this node
if (output_type == 0)
top1_class = 0; %the class with the largest number of cases
top1_class_cases = 0; %the number of cases in top1_class
[top1_class_cases,top1_class]=max(class_freqs);
end
if (size_t==0) %impossble
new_node=-1;
fprintf('Fatal error: please contact the author. \n');
return;
end
% stop splitting if needed
%for discrete output: one class
%for cts output, all output value in cases are same
%cases too little
if ( (output_type==0 & top1_class_cases == size_t) | (output_type==1 & std_T == 0) | (size_t < stop_cases))
%create one new leaf node
tree.num_node=tree.num_node+1;
tree.nodes(tree.num_node).used=1; %flag this node is used (0 means node not used, it will be removed from tree at last to save memory)
tree.nodes(tree.num_node).is_leaf=1;
tree.nodes(tree.num_node).children=[];
tree.nodes(tree.num_node).split_id=0; %the attribute(parent) id to split this tree node
tree.nodes(tree.num_node).split_threshhold=0;
if (output_type==0)
tree.nodes(tree.num_node).probs=class_freqs/size_t; %the prob for each value of class node
% tree.nodes(tree.num_node).probs=zeros(1,num_cat); %the prob for each value of class node
% tree.nodes(tree.num_node).probs(top1_class)=1; %use the majority class of parent node, like for binary class,
%and majority is class 2, then the CPT is [0 1]
%we may need to use prior to do smoothing, to get [0.001 0.999]
tree.nodes(tree.num_node).error.self_error=1-top1_class_cases/size_t; %the classfication error in this tree node when use default class
tree.nodes(tree.num_node).error.all_error=1-top1_class_cases/size_t; %no total classfication error in this tree node and its subtree
tree.nodes(tree.num_node).error.all_error_num=size_t - top1_class_cases;
fprintf('Create leaf node(onecla) %d. Class %d Cases %d Error %d \n',tree.num_node, top1_class, size_t, size_t - top1_class_cases );
else
avg_y_T = mean(cases_T);
tree.nodes(tree.num_node).mean = avg_y_T;
tree.nodes(tree.num_node).std = std_T;
fprintf('Create leaf node(samevalue) %d. Mean %8.4f Std %8.4f Cases %d \n',tree.num_node, avg_y_T, std_T, size_t);
end
new_node = tree.num_node;
return;
end
%create one new node
tree.num_node=tree.num_node+1;
tree.nodes(tree.num_node).used=1; %flag this node is used (0 means node not used, it will be removed from tree at last to save memory)
tree.nodes(tree.num_node).is_leaf=1;
tree.nodes(tree.num_node).children=[];
tree.nodes(tree.num_node).split_id=0;
tree.nodes(tree.num_node).split_threshhold=0;
if (output_type==0)
tree.nodes(tree.num_node).error.self_error=1-top1_class_cases/size_t;
tree.nodes(tree.num_node).error.all_error=0;
tree.nodes(tree.num_node).error.all_error_num=0;
else
avg_y_T = mean(cases_T);
tree.nodes(tree.num_node).mean = avg_y_T;
tree.nodes(tree.num_node).std = std_T;
end
new_node = tree.num_node;
%Stop splitting if no attributes left in this node
if (size_attrs==0)
if (output_type==0)
tree.nodes(tree.num_node).probs=class_freqs/size_t; %the prob for each value of class node
tree.nodes(tree.num_node).error.all_error=1-top1_class_cases/size_t;
tree.nodes(tree.num_node).error.all_error_num=size_t - top1_class_cases;
fprintf('Create leaf node(noattr) %d. Class %d Cases %d Error %d \n',tree.num_node, top1_class, size_t, size_t - top1_class_cases );
else
fprintf('Create leaf node(noattr) %d. Mean %8.4f Std %8.4f Cases %d \n',tree.num_node, avg_y_T, std_T, size_t);
end
return;
end
%(3) for each attribute A
% ComputeGain(A);
max_gain=0; %the max gain score (for discrete information gain or gain ration, for cts node the R(T))
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -