?? convert_to_table.m
字號:
function T = convert_to_table(CPD, domain, evidence)
% CONVERT_TO_TABLE Convert a mlp CPD to a table, incorporating any evidence
% T = convert_to_table(CPD, domain, evidence)
self = domain(end);
ps = domain(1:end-1); % self' parents
%cps = myintersect(ps, cnodes); % self' continous parents
cnodes = domain(CPD.cpndx);
cps = myintersect(ps, cnodes);
odom = domain(~isemptycell(evidence(domain))); % obs nodes in the net
assert(myismember(cps, odom)); % !ALL the CTS parents must be observed!
ns(cps)=1;
dps = mysetdiff(ps, cps); % self' discrete parents
dobs = myintersect(dps, odom); % discrete obs parents
% Extract the params compatible with the observations (if any) on the discrete parents (if any)
if ~isempty(dobs),
dvals = cat(1, evidence{dobs});
ns_eff= CPD.sizes; % effective node sizes
ens=ns_eff;
ens(dobs) = 1;
S=prod(ens(dps));
subs = ind2subv(ens(dps), 1:S);
mask = find_equiv_posns(dobs, dps);
for i=1:length(mask),
subs(:,mask(i)) = dvals(i);
end
support = subv2ind(ns_eff(dps), subs)';
else
ns_eff= CPD.sizes;
support=[1:prod(ns_eff(dps))];
end
W1=[]; b1=[]; W2=[]; b2=[];
W1 = CPD.W1(:,:,support);
b1= CPD.b1(support,:);
W2 = CPD.W2(:,:,support);
b2= CPD.b2(support,:);
ns(odom) = 1;
dpsize = prod(ns(dps)); % overall size of the self' discrete parents
x = cat(1, evidence{cps});
ndata=size(x,2);
if ~isempty(evidence{self}) %
app=struct(CPD); %
ns(self)=app.mlp{1}.nout; % pump up self to the original dimension if observed
clear app; %
end %
T =zeros(dpsize, ns(self)); %
for i=1:dpsize %
W1app = W1(:,:,i); %
b1app = b1(i,:); %
W2app = W2(:,:,i); %
b2app = b2(i,:); % for each of the dpsize combinations of self'parents values
z = tanh(x(:)'*W1app + ones(ndata, 1)*b1app); % we tabulate the corrisponding glm model
a = z*W2app + ones(ndata, 1)*b2app; % (element of the cell array CPD.glim)
appoggio = normalise(exp(a)); %
T(i,:)=appoggio; %
W1app=[]; W2app=[]; b1app=[]; b2app=[]; %
z=[]; a=[]; appoggio=[]; %
end %
if ~isempty(evidence{self})
appoggio=[]; %
appoggio=zeros(1,ns(self)); %
r = evidence{self}; %...if self is observed => in output there's only the probability of the 'true' class
for i=1:dpsize %
appoggio(i)=T(i,r); %
end
T=zeros(dpsize,1);
for i=1:dpsize
T(i,1)=appoggio(i);
end
clear appoggio;
ns(self) = 1;
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -