?? set_fields.m
字號:
function CPD = set_params(CPD, varargin)
% SET_PARAMS Set the parameters (fields) for a softmax_CPD object
% CPD = set_params(CPD, name/value pairs)
%
% The following optional arguments can be specified in the form of name/value pairs:
% (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y), Q1=ns(dps(1)), Q2=ns(dps(2)), ...
% where dps are the discrete parents; if there are no discrete parents, we set Q1=1.)
%
% weights - (W(:,j,a,b,...) - W(:,j',a,b,...)) is ppn to dec. boundary
% between j,j' given Q1=a,Q2=b,... [ randn(X,Y,Q1,Q2,...) ]
% offset - (offset(j,a,b,...) - offset(j',a,b,...)) is the offset to dec. boundary
% between j,j' given Q1=a,Q2=b,... [ randn(Y,Q1,Q2,...) ]
% clamped - 'yes' means don't adjust params during learning ['no']
% max_iter - the maximum number of steps to take [10]
% verbose - 'yes' means print the LL at each step of IRLS ['no']
% wthresh - convergence threshold for weights [1e-2]
% llthresh - convergence threshold for log likelihood [1e-2]
% approx_hess - 'yes' means approximate the Hessian for speed ['no']
%
% e.g., CPD = set_params(CPD,'offset', zeros(ns(i),1));
args = varargin;
nargs = length(args);
glimsz = prod(CPD.sizes(CPD.dpndx));
for i=1:2:nargs
switch args{i},
case 'discrete', str='nothing to do';
case 'clamped', CPD = set_clamped(CPD, strcmp(args{i+1}, 'yes'));
case 'max_iter', CPD.max_iter = args{i+1};
case 'verbose', CPD.verbose = strcmp(args{i+1}, 'yes');
case 'max_iter', CPD.max_iter = args{i+1};
case 'wthresh', CPD.wthresh = args{i+1};
case 'llthresh', CPD.llthresh = args{i+1};
case 'approx_hess', CPD.approx_hess = strcmp(args{i+1}, 'yes');
case 'weights', for q=1:glimsz, CPD.glim{q}.w1 = args{i+1}(:,:,q); end;
case 'offset',
if glimsz == 1
CPD.glim{1}.b1 = args{i+1};
else
for q=1:glimsz, CPD.glim{q}.b1 = args{i+1}(:,q); end;
end
otherwise,
error(['invalid argument name ' args{i}]);
end
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -