?? belprop_mrf2_inf_engine.m
字號:
function engine = belprop_mrf2_inf_engine(mrf2, varargin)
% BELPROP_MRF2_INF_ENGINE Belief propagation for MRFs with discrete pairwise potentials
% engine = belprop_mrf2_inf_engine(mrf2, ...)
%
% This is like belprop_inf_engine, except it is designed for mrf2, so is much faster.
%
% [ ... ] = belprop_mrf2_inf_engine(..., 'param1',val1, 'param2',val2, ...)
% allows you to specify optional parameters as name/value pairs.
% Parameters modifying behavior of enter_evidence are below [default value in brackets]
%
% max_iter - max. num. iterations [ 5*nnodes]
% momentum - weight assigned to old message in convex combination
% (useful for damping oscillations) [0]
% tol - tolerance used to assess convergence [1e-3]
% verbose - 1 means print error at every iteration [0]
%
% Parameters can be changed later using set_params
% The advantages of pairwise potentials are
% (1) we can compute messages using vector-matrix multiplication
% (2) we can easily specify the parameters: one potential per edge
% In contrast, potentials on larger cliques are more complicated to deal with.
nnodes = length(mrf2.adj_mat);
[engine.max_iter, engine.momentum, engine.tol, engine.verbose] = ...
process_options(varargin, 'max_iter', [], 'momentum', 0, 'tol', 1e-3, ...
'verbose', 0);
if isempty(engine.max_iter) % no user supplied value, so compute default
engine.max_iter = 5*nnodes;
%if acyclic(mrf2.adj_mat, 0) --- can be very slow!
% engine.max_iter = nnodes;
%else
% engine.max_iter = 5*nnodes;
%end
end
engine.bel = cell(1, nnodes); % store results of enter_evidence here
engine.mrf2 = mrf2;
engine = class(engine, 'belprop_mrf2_inf_engine');
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -