亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? svm-space vector machine
??
字號:
Python-to-libsvm interfaceIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed a lot of useful suggestions and help.Installation============The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.4 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary tohave SWIG installed because the generated svmc_wrap.c is included inthis package (It was generated using SWIG 1.3.21). If you prefergenerating the interface with SWIG on your own, you can simply removethe generated files with	make morecleanbefore building the module.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.dll is ready in thedirectory windows/python. You need to copy it to this directory.  Thedll file depends on different versions of python, so you may have tore-make it by following the instruction of building windows binariesin libsvm README.Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.dll) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONPATHpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the trainingprocess. The attributes in svm_parameter include svm_type,kernel_type, degree, gamma, coef0, nu, cache_size, C, eps, p,shrinking, nr_weight, weight_label, and weight. Available svm typesinclude C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user cansetup the parameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To conduct n-fold cross validation; predicted labels in the validationprocess are returned.	target = cross_validation(prob, param, n)To predict a new sample with the model:	r = m.predict([1, 1, 1])To obtain decision values of predicting a sample:	d = m.predict_values([1, 1, 1])	To predict a new sample and obtain probability estimates;return value is a dict that maps labels to probabilities.	prd, prb = m.predict_probability([1, 1, 1])	sample of prd : 1.0	sample of prb : {1:0.6, -1:0.4}To obtain sigma of the probability density function for regression;see ../README for the definition of the function.	sigma = m.get_svr_probability()To obtain the probability density function for regression; see../README for the definition of the function.	pdf = m.get_svr_pdf()	probability = pdf(z)To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests various kernels on a three-class problem withC-SVM. It also demonstrates how to obtain decision values andprobability estimates.test_cross_validation.py demonstrates loading data from a file anddoes a ten-fold cross validation on the heart_scale dataset. It makesuse of cross_validation.py which calls the C++ cross validationsubroutine.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产一区二区调教| 国产天堂亚洲国产碰碰| 久久综合九色综合97婷婷| 亚洲图片欧美激情| 免费观看在线综合色| 91免费版在线看| 久久久国产一区二区三区四区小说 | 亚洲一级二级在线| 成人午夜电影小说| 日韩精品一区二区三区在线观看| 亚洲人被黑人高潮完整版| 国内精品国产成人国产三级粉色| 欧美日韩一区二区三区四区五区| 亚洲欧洲精品成人久久奇米网| 精品一区在线看| 91精品欧美久久久久久动漫| 一个色综合av| 在线视频一区二区免费| 亚洲欧美日韩电影| 高清国产午夜精品久久久久久| 日韩免费视频一区| 奇米在线7777在线精品| 欧美日韩在线播| 亚洲第一精品在线| 欧美性受xxxx| 亚洲一区二区三区在线看| 一本到不卡免费一区二区| 亚洲欧美影音先锋| 91在线精品一区二区三区| 国产精品蜜臀av| 99re8在线精品视频免费播放| 国产精品网站在线播放| eeuss鲁片一区二区三区在线看| 国产欧美日韩另类视频免费观看| 国产一区视频导航| 国产偷国产偷精品高清尤物| 国产精品18久久久久久久久久久久| 精品国产网站在线观看| 国产一区二区三区精品欧美日韩一区二区三区 | 欧美一区二区成人6969| 午夜欧美一区二区三区在线播放| 欧美性色综合网| 日韩专区欧美专区| 精品久久久网站| 国产一区二区在线电影| 亚洲国产激情av| 色诱视频网站一区| 亚洲成a人v欧美综合天堂下载| 欧美人与禽zozo性伦| 日本vs亚洲vs韩国一区三区| 日韩亚洲欧美一区| 国模冰冰炮一区二区| 中文字幕av免费专区久久| 97久久久精品综合88久久| 亚洲大型综合色站| 欧美成人性福生活免费看| 成人激情免费视频| 亚洲乱码中文字幕| 制服丝袜在线91| 国产乱理伦片在线观看夜一区| 国产精品国产三级国产aⅴ无密码| 欧洲av在线精品| 激情深爱一区二区| 亚洲欧美日韩国产一区二区三区 | 欧美成va人片在线观看| 高清日韩电视剧大全免费| 亚洲午夜免费福利视频| 91精品国产综合久久精品性色| 国产酒店精品激情| 亚洲狠狠丁香婷婷综合久久久| 日韩一区二区三区精品视频| 国产suv精品一区二区6| 亚洲成人高清在线| 亚洲国产精品ⅴa在线观看| 欧美日韩在线播放| 高清日韩电视剧大全免费| 丝袜亚洲另类欧美| 成人欧美一区二区三区黑人麻豆| 欧美日韩精品一二三区| 国产91富婆露脸刺激对白| 日韩电影一二三区| 国产精品二三区| 日韩你懂的在线观看| 色伊人久久综合中文字幕| 国产精品一区二区在线观看网站| 亚洲6080在线| 亚洲日本在线a| 欧美精品一区二区三区蜜桃| 欧美性色黄大片| 99国产精品久久久久| 国产一区二区女| 丝袜美腿亚洲一区| 亚洲欧洲日本在线| www国产亚洲精品久久麻豆| 欧美三片在线视频观看| 99精品欧美一区| 国产精品538一区二区在线| 日韩福利电影在线| 亚洲第一成年网| 亚洲精品国产第一综合99久久| 国产午夜精品福利| 久久―日本道色综合久久| 91精品国产91久久久久久最新毛片| 99久久国产综合色|国产精品| 国产不卡免费视频| 狠狠网亚洲精品| 麻豆精品久久久| 欧美aaaaaa午夜精品| 日韩国产精品久久久久久亚洲| 亚洲一区在线电影| 亚洲激情六月丁香| 亚洲欧美日韩国产另类专区| 国产精品久久久久一区| 国产精品美女久久久久久久久久久| 久久先锋影音av鲁色资源| 久久只精品国产| 久久综合色一综合色88| 久久婷婷色综合| 国产亚洲欧美色| 国产精品视频在线看| 国产精品传媒视频| 综合久久给合久久狠狠狠97色 | 91精品国产综合久久香蕉的特点| 欧美日韩一区二区三区四区五区 | 色呦呦国产精品| 91国内精品野花午夜精品| 欧美性色综合网| 6080午夜不卡| 欧美xxxx老人做受| 国产欧美日韩精品一区| 中文字幕一区二区三区在线播放| 亚洲日本护士毛茸茸| 亚洲国产aⅴ成人精品无吗| 午夜精品久久久久久久久| 偷拍日韩校园综合在线| 久国产精品韩国三级视频| 风间由美一区二区av101| 91免费国产在线观看| 欧美久久久久久蜜桃| 久久久五月婷婷| 亚洲麻豆国产自偷在线| 午夜视频在线观看一区| 国模大尺度一区二区三区| 粉嫩av一区二区三区粉嫩| 在线免费观看一区| 678五月天丁香亚洲综合网| 久久久一区二区三区| 亚洲乱码日产精品bd| 日韩中文字幕区一区有砖一区| 蜜桃一区二区三区在线| 成人免费三级在线| 51精品视频一区二区三区| 国产欧美一区二区精品秋霞影院 | 国产精品毛片高清在线完整版| 一区二区三区成人| 久久精品国产99国产| av在线这里只有精品| 9191久久久久久久久久久| 亚洲欧洲在线观看av| 久久综合综合久久综合| 色综合久久久久久久| 精品国内二区三区| 亚洲成人在线观看视频| 国产.欧美.日韩| 91精品国产综合久久久久久漫画 | 久久一留热品黄| 午夜影院久久久| 国产成人激情av| 欧美人与性动xxxx| 亚洲视频香蕉人妖| 国产精品一区二区在线观看不卡| 欧美图区在线视频| 中文字幕一区二区在线观看| 日本aⅴ免费视频一区二区三区| 成人动漫中文字幕| 精品国产免费人成电影在线观看四季| 亚洲精品综合在线| 波多野结衣在线一区| 精品三级在线观看| 午夜欧美在线一二页| 99r国产精品| 日本一区二区三区在线观看| 日产欧产美韩系列久久99| 欧洲精品一区二区三区在线观看| 亚洲国产精品精华液ab| 国内精品第一页| 日韩欧美另类在线| 麻豆一区二区在线| 91精品国产综合久久福利| 亚洲国产一区二区在线播放| av中文字幕不卡| 国产精品色哟哟| 国产一区二区三区在线观看精品 | 99久久久国产精品| 国产精品久久久久7777按摩| 久久精品国产**网站演员| 欧美电影免费观看高清完整版在| 日韩av一区二区在线影视| 欧美在线免费观看视频| 亚洲一线二线三线久久久|