?? entry.s
字號(hào):
/* * arch/s390/kernel/entry.S * S390 low-level entry points. * * S390 version * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com), * Hartmut Penner (hp@de.ibm.com), * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), */#include <linux/sys.h>#include <linux/linkage.h>#include <linux/config.h>#include <asm/cache.h>#include <asm/lowcore.h>#include <asm/errno.h>#include <asm/smp.h>#include <asm/ptrace.h>#include "asm-offsets.h"/* * Stack layout for the system_call stack entry. * The first few entries are identical to the user_regs_struct. */SP_PTREGS = STACK_FRAME_OVERHEAD SP_PSW = STACK_FRAME_OVERHEAD + PT_PSWMASKSP_R0 = STACK_FRAME_OVERHEAD + PT_GPR0SP_R1 = STACK_FRAME_OVERHEAD + PT_GPR1SP_R2 = STACK_FRAME_OVERHEAD + PT_GPR2SP_R3 = STACK_FRAME_OVERHEAD + PT_GPR3SP_R4 = STACK_FRAME_OVERHEAD + PT_GPR4SP_R5 = STACK_FRAME_OVERHEAD + PT_GPR5SP_R6 = STACK_FRAME_OVERHEAD + PT_GPR6SP_R7 = STACK_FRAME_OVERHEAD + PT_GPR7SP_R8 = STACK_FRAME_OVERHEAD + PT_GPR8SP_R9 = STACK_FRAME_OVERHEAD + PT_GPR9SP_R10 = STACK_FRAME_OVERHEAD + PT_GPR10SP_R11 = STACK_FRAME_OVERHEAD + PT_GPR11SP_R12 = STACK_FRAME_OVERHEAD + PT_GPR12SP_R13 = STACK_FRAME_OVERHEAD + PT_GPR13SP_R14 = STACK_FRAME_OVERHEAD + PT_GPR14SP_R15 = STACK_FRAME_OVERHEAD + PT_GPR15SP_AREGS = STACK_FRAME_OVERHEAD + PT_ACR0SP_ORIG_R2 = STACK_FRAME_OVERHEAD + PT_ORIGGPR2/* Now the additional entries */SP_TRAP = (SP_ORIG_R2+GPR_SIZE)SP_SIZE = (SP_TRAP+4)/* * Base Address of this Module --- saved in __LC_ENTRY_BASE */ .globl entry_baseentry_base:#define BASED(name) name-entry_base(%r13)/* * Register usage in interrupt handlers: * R9 - pointer to current task structure * R13 - pointer to literal pool * R14 - return register for function calls * R15 - kernel stack pointer */ .macro SAVE_ALL_BASE stm %r13,%r15,__LC_SAVE_AREA basr %r13,0 # temp base pointer0: stam %a2,%a4,__LC_SAVE_AREA+12 l %r13,.Lentry_base-0b(%r13)# load &entry_base to %r13 .endm .macro SAVE_ALL psworg,sync # system entry macro tm \psworg+1,0x01 # test problem state bit .if \sync bz BASED(1f) # skip stack setup save .else bnz BASED(0f) # from user -> load kernel stack l %r14,__LC_ASYNC_STACK # are we already on the async stack ? slr %r14,%r15 sra %r14,13 be BASED(1f) l %r15,__LC_ASYNC_STACK # load async. stack b BASED(1f) .endif0: l %r15,__LC_KERNEL_STACK # problem state -> load ksp lam %a2,%a4,BASED(.Lc_ac) # set ac.reg. 2 to primary space # and ac.reg. 4 to home space1: s %r15,BASED(.Lc_spsize) # make room for registers & psw n %r15,BASED(.Lc0xfffffff8) # align stack pointer to 8 stm %r0,%r12,SP_R0(%r15) # store gprs 0-12 to kernel stack st %r2,SP_ORIG_R2(%r15) # store original content of gpr 2 mvc SP_R13(12,%r15),__LC_SAVE_AREA # move R13-R15 to stack stam %a0,%a15,SP_AREGS(%r15) # store access registers to kst. mvc SP_AREGS+8(12,%r15),__LC_SAVE_AREA+12 # store ac. regs mvc SP_PSW(8,%r15),\psworg # move user PSW to stack la %r0,\psworg # store trap indication st %r0,SP_TRAP(%r15) xc 0(4,%r15),0(%r15) # clear back chain .endm .macro RESTORE_ALL sync # system exit macro mvc __LC_RETURN_PSW(8),SP_PSW(%r15) # move user PSW to lowcore lam %a0,%a15,SP_AREGS(%r15) # load the access registers lm %r0,%r15,SP_R0(%r15) # load gprs 0-15 of user ni __LC_RETURN_PSW+1,0xfd # clear wait state bit lpsw __LC_RETURN_PSW # back to caller .endm .macro GET_CURRENT l %r9,BASED(.Lc0xffffe000) # load pointer to task_struct to %r9 al %r9,__LC_KERNEL_STACK .endm/* * Scheduler resume function, called by switch_to * gpr2 = (task_struct *) prev * gpr3 = (task_struct *) next * Returns: * gpr2 = prev */ .globl resumeresume: basr %r1,0resume_base: tm __THREAD_per(%r3),0xe8 # new process is using per ? bz resume_noper-resume_base(%r1) # if not we're fine stctl %c9,%c11,24(%r15) # We are using per stuff clc __THREAD_per(12,%r3),24(%r15) be resume_noper-resume_base(%r1) # we got away w/o bashing TLB's lctl %c9,%c11,__THREAD_per(%r3) # Nope we didn'tresume_noper: stm %r6,%r15,24(%r15) # store resume registers of prev task st %r15,__THREAD_ksp(%r2) # store kernel stack to prev->tss.ksp l %r15,__THREAD_ksp(%r3) # load kernel stack from next->tss.ksp stam %a2,%a2,__THREAD_ar2(%r2) # store kernel access reg. 2 stam %a4,%a4,__THREAD_ar4(%r2) # store kernel access reg. 4 lam %a2,%a2,__THREAD_ar2(%r3) # load kernel access reg. 2 lam %a4,%a4,__THREAD_ar4(%r3) # load kernel access reg. 4 lm %r6,%r15,24(%r15) # load resume registers of next task ahi %r3,8192 st %r3,__LC_KERNEL_STACK # __LC_KERNEL_STACK = new kernel stack br %r14/* * do_softirq calling function. We want to run the softirq functions on the * asynchronous interrupt stack. */ .global do_call_softirqdo_call_softirq: stm %r12,%r15,24(%r15) lr %r12,%r15 basr %r13,0do_call_base: l %r0,__LC_ASYNC_STACK slr %r0,%r15 sra %r0,13 be 0f-do_call_base(%r13) l %r15,__LC_ASYNC_STACK0: sl %r15,.Lc_overhead-do_call_base(%r13) st %r12,0(%r15) # store backchain l %r1,.Ldo_softirq-do_call_base(%r13) basr %r14,%r1 lm %r12,%r15,24(%r12) br %r14 /* * SVC interrupt handler routine. System calls are synchronous events and * are executed with interrupts enabled. */ .globl system_callsystem_call: SAVE_ALL_BASE SAVE_ALL __LC_SVC_OLD_PSW,1 lh %r8,0x8a # get svc number from lowcore sll %r8,2 GET_CURRENT # load pointer to task_struct to R9 stosm 24(%r15),0x03 # reenable interrupts l %r8,sys_call_table-entry_base(%r8,%r13) # get system call addr. tm __TASK_ptrace+3(%r9),0x02 # PT_TRACESYS bnz BASED(sysc_tracesys) basr %r14,%r8 # call sys_xxxx st %r2,SP_R2(%r15) # store return value (change R2 on stack) # ATTENTION: check sys_execve_glue before # changing anything here !!sysc_return: tm SP_PSW+1(%r15),0x01 # returning to user ? bno BASED(sysc_leave) # no-> skip resched & signal## check, if reschedule is needed# icm %r0,15,__TASK_need_resched(%r9) bnz BASED(sysc_reschedule) icm %r0,15,__TASK_sigpending(%r9) bnz BASED(sysc_signal_return)sysc_leave: stnsm 24(%r15),0xfc # disable I/O and ext. interrupts RESTORE_ALL 1## call do_signal before return#sysc_signal_return: la %r2,SP_PTREGS(%r15) # load pt_regs sr %r3,%r3 # clear *oldset l %r1,BASED(.Ldo_signal) la %r14,BASED(sysc_leave) br %r1 # return point is sysc_leave## call schedule with sysc_return as return-address#sysc_reschedule: l %r1,BASED(.Lschedule) la %r14,BASED(sysc_return) br %r1 # call scheduler, return to sysc_return## call trace before and after sys_call#sysc_tracesys: la %r11,BASED(sysc_return)## call syscall_trace before and after system call# special linkage: %r11 contains the return address for trace_svc#trace_svc: l %r1,BASED(.Ltrace) l %r7,BASED(.Lc_ENOSYS) st %r7,SP_R2(%r15) # give sysc_trace an -ENOSYS retval basr %r14,%r1 l %r2,SP_R2(%r15) cr %r2,%r7 # compare with saved -ENOSYS be BASED(trace_svc_go) # strace changed the syscall ? sll %r2,24 srl %r2,22 l %r8,sys_call_table-entry_base(%r2,%r13) # get system call addr.trace_svc_go: lm %r3,%r6,SP_R3(%r15) l %r2,SP_ORIG_R2(%r15) basr %r14,%r8 # call sys_xxx st %r2,SP_R2(%r15) # store return value l %r1,BASED(.Ltrace) lr %r14,%r11 # return point is in %r11 br %r1## a new process exits the kernel with ret_from_fork# .globl ret_from_forkret_from_fork: basr %r13,0 l %r13,.Lentry_base-.(%r13) # setup base pointer to &entry_base GET_CURRENT # load pointer to task_struct to R9 stosm 24(%r15),0x03 # reenable interrupts sr %r0,%r0 # child returns 0 st %r0,SP_R2(%r15) # store return value (change R2 on stack) l %r1,BASED(.Lschedtail) la %r14,BASED(sysc_return) br %r1 # call schedule_tail, return to sysc_return## clone, fork, vfork, exec and sigreturn need glue,# because they all expect pt_regs as parameter,# but are called with different parameter.# return-address is set up above#sys_clone_glue: la %r2,SP_PTREGS(%r15) # load pt_regs l %r1,BASED(.Lclone) br %r1 # branch to sys_clonesys_fork_glue: la %r2,SP_PTREGS(%r15) # load pt_regs l %r1,BASED(.Lfork) br %r1 # branch to sys_forksys_vfork_glue: la %r2,SP_PTREGS(%r15) # load pt_regs l %r1,BASED(.Lvfork) br %r1 # branch to sys_vforksys_execve_glue: la %r2,SP_PTREGS(%r15) # load pt_regs l %r1,BASED(.Lexecve) lr %r12,%r14 # save return address basr %r14,%r1 # call sys_execve ltr %r2,%r2 # check if execve failed
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -