?? c-rm7k.c
字號:
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * r4xx0.c: R4000 processor variant specific MMU/Cache routines. * * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com) * Copyright (C) 1997, 1998 Ralf Baechle ralf@gnu.org * * To do: * * - this code is a overbloated pig * - many of the bug workarounds are not efficient at all, but at * least they are functional ... */#include <linux/config.h>#include <linux/init.h>#include <linux/kernel.h>#include <linux/sched.h>#include <linux/mm.h>#include <asm/io.h>#include <asm/page.h>#include <asm/pgtable.h>#include <asm/system.h>#include <asm/bootinfo.h>#include <asm/cpu.h>#include <asm/mmu_context.h>/* CP0 hazard avoidance. */#define BARRIER __asm__ __volatile__(".set noreorder\n\t" \ "nop; nop; nop; nop; nop; nop;\n\t" \ ".set reorder\n\t")/* Primary cache parameters. */static int icache_size, dcache_size; /* Size in bytes */#define ic_lsize 32 /* Fixed to 32 byte on RM7000 */#define dc_lsize 32 /* Fixed to 32 byte on RM7000 */#define sc_lsize 32 /* Fixed to 32 byte on RM7000 */#define tc_pagesize (32*128)/* Secondary cache parameters. */#define scache_size (256*1024) /* Fixed to 256KiB on RM7000 */#include <asm/cacheops.h>#include <asm/r4kcache.h>int rm7k_tcache_enabled = 0;/* * Not added to asm/r4kcache.h because it seems to be RM7000-specific. */#define Page_Invalidate_T 0x16static inline void invalidate_tcache_page(unsigned long addr){ __asm__ __volatile__( ".set\tnoreorder\t\t\t# invalidate_tcache_page\n\t" ".set\tmips3\n\t" "cache\t%1, (%0)\n\t" ".set\tmips0\n\t" ".set\treorder" : : "r" (addr), "i" (Page_Invalidate_T));}static void __flush_cache_all_d32i32(void){ blast_dcache32(); blast_icache32();}static inline void rm7k_flush_cache_all_d32i32(void){ /* Yes! Caches that don't suck ... */}static void rm7k_flush_cache_range_d32i32(struct mm_struct *mm, unsigned long start, unsigned long end){ /* RM7000 caches are sane ... */}static void rm7k_flush_cache_mm_d32i32(struct mm_struct *mm){ /* RM7000 caches are sane ... */}static void rm7k_flush_cache_page_d32i32(struct vm_area_struct *vma, unsigned long page){ /* RM7000 caches are sane ... */}static void rm7k_flush_page_to_ram_d32i32(struct page * page){ /* Yes! Caches that don't suck! */}static void rm7k_flush_icache_range(unsigned long start, unsigned long end){ /* * FIXME: This is overdoing things and harms performance. */ __flush_cache_all_d32i32();}static void rm7k_flush_icache_page(struct vm_area_struct *vma, struct page *page){ /* * FIXME: We should not flush the entire cache but establish some * temporary mapping and use hit_invalidate operation to flush out * the line from the cache. */ __flush_cache_all_d32i32();}/* * Writeback and invalidate the primary cache dcache before DMA. * (XXX These need to be fixed ...) */static voidrm7k_dma_cache_wback_inv(unsigned long addr, unsigned long size){ unsigned long end, a; a = addr & ~(sc_lsize - 1); end = (addr + size) & ~(sc_lsize - 1); while (1) { flush_dcache_line(a); /* Hit_Writeback_Inv_D */ flush_scache_line(a); /* Hit_Writeback_Inv_SD */ if (a == end) break; a += sc_lsize; } if (!rm7k_tcache_enabled) return; a = addr & ~(tc_pagesize - 1); end = (addr + size) & ~(tc_pagesize - 1); while(1) { invalidate_tcache_page(a); /* Page_Invalidate_T */ if (a == end) break; a += tc_pagesize; }}static voidrm7k_dma_cache_inv(unsigned long addr, unsigned long size){ unsigned long end, a; a = addr & ~(sc_lsize - 1); end = (addr + size) & ~(sc_lsize - 1); while (1) { invalidate_dcache_line(a); /* Hit_Invalidate_D */ invalidate_scache_line(a); /* Hit_Invalidate_SD */ if (a == end) break; a += sc_lsize; } if (!rm7k_tcache_enabled) return; a = addr & ~(tc_pagesize - 1); end = (addr + size) & ~(tc_pagesize - 1); while(1) { invalidate_tcache_page(a); /* Page_Invalidate_T */ if (a == end) break; a += tc_pagesize; }}static voidrm7k_dma_cache_wback(unsigned long addr, unsigned long size){ panic("rm7k_dma_cache_wback called - should not happen.");}/* * While we're protected against bad userland addresses we don't care * very much about what happens in that case. Usually a segmentation * fault will dump the process later on anyway ... */static void rm7k_flush_cache_sigtramp(unsigned long addr){ protected_writeback_dcache_line(addr & ~(dc_lsize - 1)); protected_flush_icache_line(addr & ~(ic_lsize - 1));}/* Detect and size the caches. */static inline void probe_icache(unsigned long config){ icache_size = 1 << (12 + ((config >> 9) & 7)); printk(KERN_INFO "Primary instruction cache %dKiB.\n", icache_size >> 10);}static inline void probe_dcache(unsigned long config){ dcache_size = 1 << (12 + ((config >> 6) & 7)); printk(KERN_INFO "Primary data cache %dKiB.\n", dcache_size >> 10);}/* * This function is executed in the uncached segment KSEG1. * It must not touch the stack, because the stack pointer still points * into KSEG0. * * Three options: * - Write it in assembly and guarantee that we don't use the stack. * - Disable caching for KSEG0 before calling it. * - Pray that GCC doesn't randomly start using the stack. * * This being Linux, we obviously take the least sane of those options - * following DaveM's lead in r4xx0.c * * It seems we get our kicks from relying on unguaranteed behaviour in GCC */static __init void setup_scache(void){ int register i; set_cp0_config(1<<3 /* CONF_SE */); set_taglo(0); set_taghi(0); for (i=0; i<scache_size; i+=sc_lsize) { __asm__ __volatile__ ( ".set noreorder\n\t" ".set mips3\n\t" "cache %1, (%0)\n\t" ".set mips0\n\t" ".set reorder" : : "r" (KSEG0ADDR(i)), "i" (Index_Store_Tag_SD)); }}static inline void probe_scache(unsigned long config){ void (*func)(void) = KSEG1ADDR(&setup_scache); if ((config >> 31) & 1) return; printk(KERN_INFO "Secondary cache %dKiB, linesize %d bytes.\n", (scache_size >> 10), sc_lsize); if ((config >> 3) & 1) return; printk(KERN_INFO "Enabling secondary cache..."); func(); printk("Done\n");}static inline void probe_tcache(unsigned long config){ if ((config >> 17) & 1) return; /* We can't enable the L3 cache yet. There may be board-specific * magic necessary to turn it on, and blindly asking the CPU to * start using it would may give cache errors. * * Also, board-specific knowledge may allow us to use the * CACHE Flash_Invalidate_T instruction if the tag RAM supports * it, and may specify the size of the L3 cache so we don't have * to probe it. */ printk(KERN_INFO "Tertiary cache present, %s enabled\n", config&(1<<12) ? "already" : "not (yet)"); if ((config >> 12) & 1) rm7k_tcache_enabled = 1;}void __init ld_mmu_rm7k(void){ unsigned long config = read_32bit_cp0_register(CP0_CONFIG); unsigned long addr; change_cp0_config(CONF_CM_CMASK, CONF_CM_UNCACHED); /* RM7000 erratum #31. The icache is screwed at startup. */ set_taglo(0); set_taghi(0); for (addr = KSEG0; addr <= KSEG0 + 4096; addr += ic_lsize) { __asm__ __volatile__ ( ".set noreorder\n\t" ".set mips3\n\t" "cache\t%1, 0(%0)\n\t" "cache\t%1, 0x1000(%0)\n\t" "cache\t%1, 0x2000(%0)\n\t" "cache\t%1, 0x3000(%0)\n\t" "cache\t%2, 0(%0)\n\t" "cache\t%2, 0x1000(%0)\n\t" "cache\t%2, 0x2000(%0)\n\t" "cache\t%2, 0x3000(%0)\n\t" "cache\t%1, 0(%0)\n\t" "cache\t%1, 0x1000(%0)\n\t" "cache\t%1, 0x2000(%0)\n\t" "cache\t%1, 0x3000(%0)\n\t" ".set\tmips0\n\t" ".set\treorder\n\t" : : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill)); } change_cp0_config(CONF_CM_CMASK, CONF_CM_DEFAULT); probe_icache(config); probe_dcache(config); probe_scache(config); probe_tcache(config); _clear_page = rm7k_clear_page; _copy_page = rm7k_copy_page; _flush_cache_all = rm7k_flush_cache_all_d32i32; ___flush_cache_all = __flush_cache_all_d32i32; _flush_cache_mm = rm7k_flush_cache_mm_d32i32; _flush_cache_range = rm7k_flush_cache_range_d32i32; _flush_cache_page = rm7k_flush_cache_page_d32i32; _flush_page_to_ram = rm7k_flush_page_to_ram_d32i32; _flush_cache_sigtramp = rm7k_flush_cache_sigtramp; _flush_icache_range = rm7k_flush_icache_range; _flush_icache_page = rm7k_flush_icache_page; _dma_cache_wback_inv = rm7k_dma_cache_wback_inv; _dma_cache_wback = rm7k_dma_cache_wback; _dma_cache_inv = rm7k_dma_cache_inv; __flush_cache_all_d32i32();}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -