?? lanc_b.m
字號:
function [U,B_k,V] = lanc_b(A,p,k,reorth) %LANC_B Lanczos bidiagonalization. % % B_k = lanc_b(A,p,k,reorth) % [U,B_k,V] = lanc_b(A,p,k,reorth) % % Performs k steps of the Lanczos bidiagonalization process with % starting vector p, producing a lower bidiagonal matrix % [b_11 ] % [b_21 b_22 ] % B_k = [ b_32 . ] % [ . b_kk ] % [ b_k+1,k] % such that % A*V = U*B_k , % where U and V consist of the left and right Lanczos vectors. % % Reorthogonalization is controlled by means of reorth: % reorth = 0 : no reorthogonalization, % reorth = 1 : reorthogonalization by means of MGS, % reorth = 2 : Householder-reorthogonalization. % No reorthogonalization is assumed if reorth is not specified. % Reference: G. H. Golub & C. F. Van Loan, "Matrix Computations", % 3. Ed., Johns Hopkins, 1996. Section 9.3.4. % Referred to as "bidiag1" by Paige and Saunders. % Per Christian Hansen, IMM, April 8, 2001. % Initialization. if (k<1), error('Number of steps k must be positive'), end if (nargin < 4), reorth = 0; end if (reorth < 0 | reorth > 2), error('Illegal reorth'), end if (nargout==2), error('Not enough output arguments'), end [m,n] = size(A); B_k = sparse(k+1,k); if (nargout>1 | reorth==1) U = zeros(m,k); V = zeros(n,k); UV = 1; else UV = 0; end if (reorth==2) if (k>=n), error('No. of iterations must satisfy k < n'), end HHU = zeros(m,k); HHV = zeros(n,k); HHalpha = zeros(1,k); HHbeta = HHalpha; end % Prepare for Lanczos iteration. v = zeros(n,1); beta = norm(p); if (beta==0), error('Starting vector must be nonzero'), end if (reorth==2) [beta,HHbeta(1),HHU(:,1)] = gen_hh(p); end u = p/beta; if (UV), U(:,1) = u; end % Perform Lanczos bidiagonalization with/without reorthogonalization. for i=1:k r = (u'*A)' - beta*v; % A'*u if (reorth==0) alpha = norm(r); v = r/alpha; elseif (reorth==1) for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end alpha = norm(r); v = r/alpha; else for j=1:i-1 r(j:n) = app_hh(r(j:n),HHalpha(j),HHV(j:n,j)); end [alpha,HHalpha(i),HHV(i:n,i)] = gen_hh(r(i:n)); v = zeros(n,1); v(i) = 1; for j=i:-1:1 v(j:n) = app_hh(v(j:n),HHalpha(j),HHV(j:n,j)); end end B_k(i,i) = alpha; if (UV), V(:,i) = v; end p = A*v - alpha*u; if (reorth==0) beta = norm(p); u = p/beta; elseif (reorth==1) for j=1:i, p = p - (U(:,j)'*p)*U(:,j); end beta = norm(p); u = p/beta; else for j=1:i p(j:m) = app_hh(p(j:m),HHbeta(j),HHU(j:m,j)); end [beta,HHbeta(i+1),HHU(i+1:m,i+1)] = gen_hh(p(i+1:m)); u = zeros(m,1); u(i+1) = 1; for j=i+1:-1:1 u(j:m) = app_hh(u(j:m),HHbeta(j),HHU(j:m,j)); end end B_k(i+1,i) = beta; if (UV), U(:,i+1) = u; end end if (nargout==1), U = B_k; end
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -