?? lsqr_b.m
字號:
function [X,rho,eta,F] = lsqr_b(A,b,k,reorth,s) %LSQR_B Solution of least squares problems by Lanczos bidiagonalization. % % [X,rho,eta,F] = lsqr_b(A,b,k,reorth,s) % % Performs k steps of the LSQR Lanczos bidiagonalization algorithm % applied to the system % min || A x - b || . % The routine returns all k solutions, stored as columns of % the matrix X. The solution norm and residual norm are returned % in eta and rho, respectively. % % If the singular values s are also provided, lsqr computes the % filter factors associated with each step and stores them columnwise % in the matrix F. % % Reorthogonalization is controlled by means of reorth: % reorth = 0 : no reorthogonalization (default), % reorth = 1 : reorthogonalization by means of MGS. % Reference: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for % sparse linear equations and sparse least squares", ACM Trans. % Math. Software 8 (1982), 43-71. % Per Christian Hansen, IMM, April 8, 2001. % The fudge threshold is used to prevent filter factors from exploding. fudge_thr = 1e-4; % Initialization. if (k < 1), error('Number of steps k must be positive'), end if (nargin==3), reorth = 0; end if (nargout==4 & nargin<5), error('Too few input arguments'), end [m,n] = size(A); X = zeros(n,k); if (reorth==0) UV = 0; elseif (reorth==1) U = zeros(m,k); V = zeros(n,k); UV = 1; if (k>=n), error('No. of iterations must satisfy k < n'), end else error('Illegal reorth') end if (nargout > 1) eta = zeros(k,1); rho = eta; c2 = -1; s2 = 0; xnorm = 0; z = 0; end if (nargin==5) ls = length(s); F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv; s = s.^2; end % Prepare for LSQR iteration. v = zeros(n,1); x = v; beta = norm(b); if (beta==0), error('Right-hand side must be nonzero'), end if (reorth==2) [beta,HHbeta(1),HHU(:,1)] = gen_hh(b); end u = b/beta; if (UV), U(:,1) = u; end r = (u'*A)'; alpha = norm(r); % A'*u; v = r/alpha; if (UV), V(:,1) = v; end phi_bar = beta; rho_bar = alpha; w = v; if (nargin==5), Fv = s/(alpha*beta); Fw = Fv; end % Perform Lanczos bidiagonalization with/without reorthogonalization. for i=2:k+1 alpha_old = alpha; beta_old = beta; % Compute A*v - alpha*u. p = A*v - alpha*u; if (reorth==0) beta = norm(p); u = p/beta; else for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end beta = norm(p); u = p/beta; end % Compute A'*u - beta*v. r = (u'*A)' - beta*v; % A'*u if (reorth==0) alpha = norm(r); v = r/alpha; else for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end alpha = norm(r); v = r/alpha; end % Store U and V if necessary. if (UV), U(:,i) = u; V(:,i) = v; end % Construct and apply orthogonal transformation. rrho = pythag(rho_bar,beta); c1 = rho_bar/rrho; s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha; phi = c1*phi_bar; phi_bar = s1*phi_bar; % Compute solution norm and residual norm if necessary; if (nargout > 1) delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z; z_bar = rhs/gamma_bar; eta(i-1) = pythag(xnorm,z_bar); gamma = pythag(gamma_bar,theta); c2 = gamma_bar/gamma; s2 = theta/gamma; z = rhs/gamma; xnorm = pythag(xnorm,z); rho(i-1) = abs(phi_bar); end % If required, compute the filter factors. if (nargin==5) if (i==2) Fv_old = Fv; Fv = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta); F(:,i-1) = (phi/rrho)*Fw; else tmp = Fv; Fv = (Fv.*(s - beta^2 - alpha_old^2) - ... Fv_old*alpha_old*beta_old)/(alpha*beta); Fv_old = tmp; F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw; end if (i > 3) f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr); if (length(f) > 0), F(f,i-1) = ones(length(f),1); end end Fw = Fv - (theta/rrho)*Fw; end % Update the solution. x = x + (phi/rrho)*w; w = v - (theta/rrho)*w; X(:,i-1) = x; end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -