?? pcgls.m
字號:
function [X,rho,eta,F] = pcgls(A,L,W,b,k,reorth,sm) %PCGLS "Preconditioned" conjugate gradients appl. implicitly to normal equations. % [X,rho,eta,F] = pcgls(A,L,W,b,k,reorth,sm) % % Performs k steps of the `preconditioned' conjugate gradient % algorithm applied implicitly to the normal equations % (A*L_p)'*(A*L_p)*x = (A*L_p)'*b , % where L_p is the A-weighted generalized inverse of L. Notice that the % matrix W holding a basis for the null space of L must also be specified. % % The routine returns all k solutions, stored as columns of the matrix X. % The solution seminorm and residual norm are returned in eta and rho, % respectively. % % If the generalized singular values sm of (A,L) are also provided, % pcgls computes the filter factors associated with each step and % stores them columnwise in the matrix F. % % Reorthogonalization of the normal equation residual vectors % A'*(A*X(:,i)-b) is controlled by means of reorth: % reorth = 0 : no reorthogonalization (default), % reorth = 1 : reorthogonalization by means of MGS. % References: A. Bjorck, "Numerical Methods for Least Squares Problems", % SIAM, Philadelphia, 1996. % P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems. % Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997. % Per Christian Hansen, IMM and Martin Hanke, Institut fuer % Praktische Mathematik, Universitaet Karlsruhe, April 8, 2001. % The fudge threshold is used to prevent filter factors from exploding. fudge_thr = 1e-4; % Initialization if (k < 1), error('Number of steps k must be positive'), end if (nargin==5), reorth = 0; end if (nargout==4 & nargin<7), error('Too few input arguments'), end if (reorth<0 | reorth>1), error('Illegal reorth'), end [m,n] = size(A); [p,n1] = size(L); X = zeros(n,k); if (nargout > 1) eta = zeros(k,1); rho = eta; end if (nargin==7) F = zeros(p,k); Fd = zeros(p,1); gamma = (sm(:,1)./sm(:,2)).^2; end % Prepare for computations with L_p. [NAA,x_0] = pinit(W,A,b); % Prepare for CG iteartion. x = x_0; r = b - A*x_0; s = (r'*A)'; % A'*r; q1 = ltsolve(L,s); q = lsolve(L,q1,W,NAA); z = q; dq = s'*q; if (nargout>2), z1 = q1; x1 = zeros(p,1); end if (reorth==1), Q1n = q1/norm(q1); end % Iterate. for j=1:k % Update x and r vectors; compute q1. Az = A*z; alpha = dq/(Az'*Az); x = x + alpha*z; r = r - alpha*Az; s = (r'*A)'; % A'*r; q1 = ltsolve(L,s); % Reorthogonalize q1 to previous q1-vectors, if required. if (reorth==1) for i=1:j, q1 = q1 - (Q1n(:,i)'*q1)*Q1n(:,i); end Q1n = [Q1n,q1/norm(q1)]; end % Update z vector. q = lsolve(L,q1,W,NAA); dq2 = s'*q; beta = dq2/dq; dq = dq2; z = q + beta*z; X(:,j) = x; if (nargout>1), rho(j) = norm(r); end if (nargout>2) x1 = x1 + alpha*z1; z1 = q1 + beta*z1; eta(j) = norm(x1); end % Compute filter factors, if required. if (nargin==7) if (j==1) F(:,1) = alpha*gamma; Fd = gamma - gamma.*F(:,1) + beta*gamma; else F(:,j) = F(:,j-1) + alpha*Fd; Fd = gamma - gamma.*F(:,j) + beta*Fd; end if (j > 2) f = find(abs(F(:,j-1)-1) < fudge_thr & abs(F(:,j-2)-1) < fudge_thr); if (length(f) > 0), F(f,j) = ones(length(f),1); end end end end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -