?? wing.m
字號:
function [A,b,x] = wing(n,t1,t2) %WING Test problem with a discontinuous solution. % % [A,b,x] = wing(n,t1,t2) % % Discretization of a first kind Fredholm integral eqaution with % kernel K and right-hand side g given by % K(s,t) = t*exp(-s*t^2) 0 < s,t < 1 % g(s) = (exp(-s*t1^2) - exp(-s*t2^2)/(2*s) 0 < s < 1 % and with the solution f given by % f(t) = | 1 for t1 < t < t2 % | 0 elsewhere. % % Here, t1 and t2 are constants satisfying t1 < t2. If they are % not speficied, the values t1 = 1/3 and t2 = 2/3 are used. % Reference: G. M. Wing, "A Primer on Integral Equations of the % First Kind", SIAM, 1991; p. 109. % Discretized by Galerkin method with orthonormal box functions; % both integrations are done by the midpoint rule. % Per Christian Hansen, IMM, 09/17/92. % Initialization. if (nargin==1) t1 = 1/3; t2 = 2/3; else if (t1 > t2), error('t1 must be smaller than t2'), end end A = zeros(n,n); h = 1/n; sh = sqrt(h); % Set up matrix. sti = ([1:n]-0.5)*h; for i=1:n A(i,:) = h*sti.*exp(-sti(i)*sti.^2); end % Set up right-hand side. if (nargout > 1) b = sqrt(h)*0.5*(exp(-sti*t1^2)' - exp(-sti*t2^2)')./sti'; end % Set up solution. if (nargout==3) I = find(t1 < sti & sti < t2); x = zeros(n,1); x(I) = sqrt(h)*ones(length(I),1); end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -