亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? bytegp.txt

?? 一個GP遺傳編程的源程序
?? TXT
?? 第 1 頁 / 共 2 頁
字號:
	Chrome* CrossTree(Chrome* mate);
	void Mutate();                          // mutate self
		// load and parse and expression.  Return success
	virtual int Load(istream& istr,int issource);
		 // write the expression to a stream
	void write(int pretty,ostream& ofile = cout);

A Function object carries information needed by the Chrome for initializing, 
displaying and evaluating expressions that contain that function.  Many 
functions, such as the arithmetic functions, are problem independent, but some 
functions, such as data terminals, require the data structures and evaluation 
environment of a particular problem.  Important data members include:
	char name[30];          // written name
	    // number of arguments.  Used to initialize and traverse arguments.
	int argnum;
	    //number of variables in variable table of opcode. To init node.idx
	int varnum;
	    // selection frequency relative to other functions.   Used in 
initialization, mutation.
	int weight;
	       // pointer to evaluation code.  Not a virtual for speed reasons
	EVALFUNC evalfunc;

The important method is:
	retval eval(class Chrome* st) {return (evalfunc)(st);};

Pop class

The Pop (short for Population) carries an array of Chromes, evaluates them with 
the fitness function provided in the current Problem, and performs a genetic 
algorithm to generate new and better Chromes.  Important data members include:
	Chrome** pop;           // allocated array holding the actual chromes
	Problem* problem;       // The current Problem
	UINT popsize;           // Number of Chromes
	long gencount;          // number of individuals generated so far
	int   BestMember;       // Index of current best Chrome

Important methods include:
		// set up a population for a particular problem
	Pop(Problem* prob,ChromeParams* par, UINT size );
		// generate a new chrome.  Return its fitness
	virtual Chrome* generate();
		// generate until reaching time max_time, evaluating maxevals 
individuals, or reaching maxfitness
	virtual Chrome* go_until(time_t max_time,long maxevals,float maxfitness);

Pop uses a "steady state" genetic algorithm, generating one new Chrome and 
replacing one old Chrome at a time, as opposed to making a whole new batch as a 
"generation".  The generate method is the agent which selects one or more 
parents and applies mutation or crossover.  This virtual method could be 
replaced by code with different strategies for selection, reproduction, or 
interaction with parallel populations.

Selection strategy is important.  We want to choose parents randomly enough so 
that we maintain a healthy diversity in our population.  If only the best 
individual reproduces, the GA will run out of raw material.  On the other hand, 
progress requires a lot more reproductions of the good individuals than the bad 
ones.  The default generate uses tournament selection of size six, which means 
that it looks at a set of six candidates selected at random and chooses the 
best one in the set.  We could make this "greedier", or more likely to pick the 
very best individuals, by increasing the size of the set.  The default generate 
also uses a kill-tournament to select an individual for replacement, replacing 
the worst of two randomly selected individuals.

The default generate does crossover 70% of the time, mutation 20% of the time, 
and a straight copy 10% of the time.  You can change these ratios in 
ChromeParams.

Problem class

In order to do GP, you must have a fitness function, which defines the problem, 
and a set of primitive operations sufficient for solving it.  Any 
implementation of GPQUICK must have a subclass of Problem which includes the 
appropriate fitness function and primitive functions.  The important data 
member is:
		// array of primitive functions
Important methods include:
	Function** funclist;
		// install the primitives and initialize the evaluation environment
	Problem();
	void AddF(Function* f);         // add a Function to the funclist
		// Pure virtual fitness function. 
		// It should evaluate the chrome in an appropriate environment,
		// and return a fitness value
	virtual float fitness(Chrome* chrome);

Most programs need to be evaluated in a particular context.  If you are trying 
to evolve a program that can navigate a maze, you need to define the maze.  
Setting up the environment should be done in the Problem constructor and at the 
beginning of the fitness function.


****************************************************************************
The included problem...

SSRProb - Simple Symbolic Regression

The sample problem provided with GPQUICK performs symbolic regression, chosen 
for simplicity and speed.  In symbolic regression we attempt to evolve an 
arithmetic expression that matches a set of output variables, or an unknown 
function.  SSRProb creates an expression using the input variables John, Paul, 
George, Ringo and Elvis.  The correct expression is John*(George - Paul) + 
2.5*Ringo.  Elvis is a noise variable.

The function set for SSRProb includes the terminals NUMBER (for numeric 
constants), John, Paul, George, Ringo, and Elvis.  It also includes the 
arithmetic functions ADD, SUB, MUL, DIV and SINE.

The fitness function for SSRProb is the sum squared error of the expression for 
20 randomly chosen samples of the input variables.

Running SSRProb

As GPQUICK runs, it periodically lists out the number of Chromes generated, the 
best fitness, and the best expression.  We can learn some important things 
about artificial evolution by watching this output.  At first, the search for a 
better expression wanders aimlessly, and total error hovers near 10^11.  
Sometimes fitness does not improve, and the run fails.  At some point, QPQUICK 
may discover a variant of the expression (MUL John (SUB George Paul), and total 
error drops suddenly to 10^7.  This illustrates the phenomenon of punctuated 
equilibrium.  Change tends to be sudden, unpredictable, and surrounded by 
periods of stability.  Now GPQUICK is looking for 2.5 Ringos.  It eventually 
finds one Ringo, followed very quickly by a second Ringo.  This demonstrates 
how a genetic algorithm uses crossover to build a solution piece by piece.  The 
expression resembles (ADD (ADD Ringo Ringo) (MUL John (SUB George Paul))) and 
the total error is near 300,000.  The expression begins to grow bigger, adding 
various functions in search of that extra half Ringo.  It may eventually build 
an sizable expression that simplifies to exactly John*(George - Paul)+2.5*Ringo 
and quit, before it times out after generating 80,000 chromes.  This result 
shows  the tendency of GP to generate messy, obscure, but effective solutions.

If you program your Pop to output population statistics, you will see that the 
variance in fitness (error) decreases just when the expressions start to grow 
in size.  The bigger expressions have a lot of redundancy, and they are likely 
to have a pretty good fitness after crossover.  I have dubbed this phenomenon 
"defense against crossover".   Chopping a piece out of one program and sticking 
it randomly into another program is a pretty radical operation which would 
almost surely kill a manually written program, but genetic programs learn 
tolerate and even thrive on it.  This is a key which explains why genetic 
programming works at all.  It evolves evolvability.

You can change the difficulty of the symbolic regression problem by changing 
the formula.  Longer polynomials are harder match.  Changing the parameters in 
the ChromeParams constructor will allow you to change the size of the 
expressions, the mix of mutation and crossover, and "greediness" of the 
selection tournament.  By removing the comment on the SINE function, you can 
increase the size of the search in "program space" and noticeably reduce the 
probability of success.  This dependence on the function set is a weakness of 
GP.  It is also an opportunity, since by improving your function set you can 
make a difficult problem easier and get it solved.

Using symbolic regression to discover a function that you already know is not 
useful, but you can modify SSRProb to learn prediction and classification from 
real world examples.  This is genetic induction, and it has several advantages 
when compared with competing statistical or neural techniques.
...
*****************************************************************************
This problem was included for its simplicity.  More Problems should be 
available later.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91麻豆福利精品推荐| 日韩视频免费直播| 91精品国产综合久久蜜臀| 国产三区在线成人av| 丝袜美腿成人在线| 91美女精品福利| 日本一区免费视频| 久久不见久久见免费视频7| 日本黄色一区二区| 中文字幕制服丝袜成人av | 99久精品国产| 日韩三区在线观看| 天天综合色天天| 成人ar影院免费观看视频| 精品人伦一区二区色婷婷| 亚洲图片欧美色图| 99国产精品国产精品久久| 中文无字幕一区二区三区| 麻豆成人91精品二区三区| 欧洲另类一二三四区| 亚洲乱码日产精品bd| 国产 日韩 欧美大片| 精品国产免费久久| 丝瓜av网站精品一区二区| 欧美日韩国产在线观看| 亚洲国产欧美日韩另类综合 | 国产在线播放一区| 日韩免费视频一区二区| 日韩av成人高清| 欧美一区二区三区视频在线| 一区二区三区加勒比av| 在线免费观看一区| 亚洲国产日韩精品| 91精品国产日韩91久久久久久| 石原莉奈一区二区三区在线观看| 欧美日韩色一区| 免费观看成人av| 欧美成人福利视频| 国产91色综合久久免费分享| 中文字幕一区二区三区乱码在线 | 91精品国产黑色紧身裤美女| 视频在线观看国产精品| 日韩欧美亚洲另类制服综合在线| 免费看欧美女人艹b| 精品奇米国产一区二区三区| 麻豆91在线播放免费| 久久久久久亚洲综合| 成人免费视频国产在线观看| 亚洲欧美偷拍卡通变态| 欧美老女人在线| 国产另类ts人妖一区二区| 亚洲人成人一区二区在线观看| 国产精品久久久久久一区二区三区| 国产欧美一区二区三区网站| 99视频在线精品| 亚洲成人精品一区| 欧美日韩国产综合视频在线观看| 日韩电影在线免费看| 国产亚洲欧洲997久久综合| 99久久婷婷国产综合精品| 五月婷婷综合激情| 日韩一卡二卡三卡国产欧美| 国产成人无遮挡在线视频| 亚洲精品中文字幕乱码三区| 日韩一区二区不卡| 色老汉一区二区三区| 精品在线一区二区| 国产精品天天摸av网| 欧美日韩国产美女| 粉嫩欧美一区二区三区高清影视| 亚洲最新视频在线观看| 久久久亚洲精华液精华液精华液 | 亚洲欧洲成人精品av97| 欧美一区国产二区| 99精品1区2区| 国产一区二区女| 亚洲成av人影院| 中文字幕一区二区三区在线不卡| 欧美日韩久久久一区| 成人不卡免费av| 久久精品国产秦先生| 亚洲综合自拍偷拍| 国产精品美女www爽爽爽| 91精品久久久久久久99蜜桃| 99re视频精品| 国产99久久久国产精品免费看| 午夜av电影一区| 一区二区三区在线影院| 中文字幕欧美激情一区| 欧美一三区三区四区免费在线看 | 欧美日韩国产综合久久| 99久久伊人久久99| 高清在线观看日韩| 久久激情五月婷婷| 青青草精品视频| 性做久久久久久免费观看欧美| 婷婷综合久久一区二区三区| 亚洲天堂2016| 欧美国产精品专区| 精品久久久久一区二区国产| 91.xcao| 欧美无砖专区一中文字| 91久久精品一区二区三区| 99久久精品免费| 91在线观看地址| av欧美精品.com| www.成人在线| 成人黄页毛片网站| 国产成人精品免费视频网站| 狠狠色丁香婷婷综合久久片| 裸体歌舞表演一区二区| 久久www免费人成看片高清| 天天色天天爱天天射综合| 午夜不卡在线视频| 日韩制服丝袜av| 日韩和的一区二区| 欧美bbbbb| 经典三级视频一区| 国产精品一区免费视频| 国产成人亚洲综合色影视| 国产在线精品一区二区夜色| 国产九色sp调教91| 成人午夜激情片| 色欧美88888久久久久久影院| 一本久久a久久免费精品不卡| 欧洲av一区二区嗯嗯嗯啊| 欧美中文字幕亚洲一区二区va在线 | 一区二区三区欧美日| 亚洲一区在线观看免费 | 国产高清不卡一区| 成人免费黄色大片| 91免费视频大全| 欧美日韩精品一区二区天天拍小说| 欧美美女bb生活片| www激情久久| 亚洲欧洲av另类| 天天色天天爱天天射综合| 精品一区二区在线视频| 成人综合在线视频| 欧美午夜寂寞影院| 久久久久国产成人精品亚洲午夜| 国产女主播一区| 亚洲高清免费观看高清完整版在线观看 | 欧美sm极限捆绑bd| 国产夜色精品一区二区av| 亚洲欧美激情插 | 亚洲人成网站在线| 日韩精品五月天| 国内精品久久久久影院薰衣草| 国产精品香蕉一区二区三区| 一本一本大道香蕉久在线精品| 欧美性猛片aaaaaaa做受| |精品福利一区二区三区| 亚洲综合久久久久| 蜜臀久久99精品久久久久久9| 国产美女av一区二区三区| 不卡视频在线看| 日韩午夜在线观看视频| 中文字幕中文字幕一区| 裸体一区二区三区| 在线观看成人免费视频| 亚洲综合色噜噜狠狠| 亚洲成a人片在线不卡一二三区| 国产主播一区二区三区| 欧美怡红院视频| 欧美韩日一区二区三区| 蜜臀av在线播放一区二区三区 | 久久精品999| 欧美人动与zoxxxx乱| 国产精品第五页| 美腿丝袜亚洲三区| 在线免费观看成人短视频| 欧美www视频| 日韩精品成人一区二区在线| 91麻豆免费观看| 中文字幕久久午夜不卡| 青青草成人在线观看| 欧美午夜片在线观看| ...xxx性欧美| 99天天综合性| 国产精品高清亚洲| 国产91综合网| 中文字幕av一区二区三区| 美女高潮久久久| 日韩一本二本av| 美腿丝袜亚洲一区| 日韩视频在线一区二区| 日韩成人精品视频| 欧美日韩国产免费一区二区| 亚洲一区二区三区四区的| 97se亚洲国产综合自在线| 国产免费成人在线视频| 丁香一区二区三区| 欧美国产一区二区在线观看| 国产另类ts人妖一区二区| 久久久久88色偷偷免费| 国产一区二区福利| 精品国产一区久久| 国产成人在线免费| 日韩一区有码在线|