亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? optim

?? matlab中的神經網絡控制系統工具箱
??
字號:
                   ------------------------------------------
                      
                   OVERVIEW OF FILES RELATED TO SIMULATION OF
                      NEURAL NETWORK BASED OPTIMAL CONTROL
                   
                   ------------------------------------------
                    
Matlab tools for training a neural network to act as an optimal controller
and for simulating the closed-loop system with the trained controller network
in the loop.


                                  -OO-


DESCRIPTION
Assuming the system to be controlled can be described by
     ^      ^
     y(t) = f(y(t-1),...,y(t-n),u(t-1),...,u(t-m))

then the present files train a neural network controller, g: 

     u(t) = g(r(t+1),y(t),...,y(t-n+1),u(t-1),...,u(t-m+1))
 
to minimize the criterion (theta is a vector containing the weights)

                                              
                  ---                  2                     2
      J(theta) =  >   [ (r(t+1)-y(t+1))   +  rho*(u(t|theta))  ]
                  ---                               
                   t                            

The network is trained with a recursive Gauss-Newton method. This
method is derived for least squares problems but has here been modified
here simply by adding an additional term to the gradient compared to the
implementation of specialized training in 'special2'. The covariance matrix
update is unchanged but that doesn't seem to of be a problem -- the algorithm
still converges quite rapidly. Three different methods for updating the
covariance matrix (the inverse Hessian) have been implemented: exponential
forgetting, constant trace, and the exponential forgetting and resetting
algorithm (EFRA).

The criterion differs from the one considered in "specialized" training of
inverse models in that the squared control actions are penalized by
introduction of an additional term in the criterion. If rho=0 the training
procedure will obviously perform exactly as 'special2' and the controller
simply becomes the inverse model.

The process to be controlled can be a SIMULINK model or a model described by a
set of differential equations specified in a MATLAB-function. If the training
data is obtained through a "real world" experiment (i.e., a MATLAB/SIMULINK
model is not available), the closed-loop system can also be simulated assuming
that the network model is a perfect description of the system to be controlled.


                                 -OO-
          
                                 
FILE OVERVIEW:
Optim    - This file
opttrain - Train a network as a "detuned" inverse model using
           indirect/specialized training. The network is trained with a
           recursive Gauss-Newton method.
optrinit - File containing initializations for 'opttrain'.
optcon   - Program for simulating the closed-loop system.
optinit  - File containing the design parameters for 'optcon'.
opttest  - A test example.


The following functions must be available as well:
NNSYSID toolbox        - Neural Network Based System Identification
shift, siggener        - Functions used by opttrain and optcon
general, invsim
smout, springm, spm1   - Files used for demonstration


                                 -OO-
                                 
                                 
SUGGESTED WORKING PROCEDURE FOR TESTING THE CONCEPT ON A KNOWN PROCESS

1: BUILD THE PROCESS
Build the process in SIMULINK or write the differential equations in a
MATLAB-function. If SIMULINK is used, specify input to and output from the
model by an inport and an outport, respectively. If SIMULINK is not available, 
write the differential equations in a MATLAB-function in the format required
by the ODE45 differential equation solver.

2: MAKE AN EXPERIMENT
Use the function 'experim' to generate a data set to be used
for inferring a neural network model of the process.

3. BUILD A MODEL OF THE PROCESS
Identify a "forward" model of the process with the 'nnarx' function and
evaluate the obtained network with 'nnvalid'. This network is used for providing
estimates of the Jacobian of the process which is required for training the
controller network.

4: TRAIN THE CONTROLLER NETWORK
'opttrain' is responsible for training the controller network. The user
specifications necessary for running this function must be written in the file
'optrinit'. One of the things that the user must specify in this file is an
initial controller network. This can for example be an inverse model trained
with 'general'. This will in most cases be more safe than just initializing
the weights at random and in addition it will often result in a more rapid
convergence.  

5: SIMULATION OF THE CLOSED-LOOP SYSTEM
The closed-loop system is simulated with the function 'optcon'. The design
parameters necessary for running this program must be defined in the file
'optinit'. For example, the user must specify the name of the
MATLAB/SIMULINK model, sampling period,, reference signal, and the name of the
file containing architecture and weights of the controller network. 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲视频免费在线| 亚洲免费观看高清在线观看| 在线观看日韩一区| 成人a级免费电影| 国产一区二区三区av电影| 一个色综合网站| 亚洲小少妇裸体bbw| 亚洲精品伦理在线| 一区二区三区在线免费| 亚洲综合久久久久| 亚洲综合一区二区精品导航| 亚洲午夜羞羞片| 午夜精品久久久久久久| 秋霞电影一区二区| 激情深爱一区二区| 成人自拍视频在线观看| 99re视频精品| 欧美色倩网站大全免费| 欧美女孩性生活视频| 欧美一区二区三区免费大片| 日韩欧美在线网站| 久久精品人人爽人人爽| 亚洲美女一区二区三区| 亚洲国产日韩精品| 紧缚奴在线一区二区三区| 国产精品一区二区久激情瑜伽| 成人app下载| 欧美浪妇xxxx高跟鞋交| 26uuu精品一区二区在线观看| 国产三级精品三级| 一区二区三区成人| 美女诱惑一区二区| jvid福利写真一区二区三区| 欧美午夜寂寞影院| 久久久久久久综合日本| 艳妇臀荡乳欲伦亚洲一区| 久久99久久久久久久久久久| 暴力调教一区二区三区| 欧美日韩夫妻久久| 国产欧美精品一区二区色综合 | 久久久www免费人成精品| 成人欧美一区二区三区| 蜜桃一区二区三区在线观看| av不卡免费电影| 日韩欧美激情四射| 亚洲欧美激情小说另类| 激情五月婷婷综合| 91麻豆精品国产91久久久久久 | 欧美日韩亚洲高清一区二区| 2020国产精品| 亚洲一区二区精品久久av| 国产成人鲁色资源国产91色综| 欧美中文字幕一区| 欧美激情一区二区三区不卡 | 麻豆一区二区三| 99久精品国产| 欧美激情在线免费观看| 久久精品国产色蜜蜜麻豆| 欧美唯美清纯偷拍| 国产精品乱码久久久久久| 老司机精品视频导航| 欧美人妇做爰xxxⅹ性高电影| 亚洲丝袜另类动漫二区| 国产成人av资源| 久久先锋影音av鲁色资源| 日韩高清在线观看| 欧美性大战久久久久久久| 中文字幕一区二区三区在线不卡 | 欧美日韩中文字幕一区二区| 中文字幕日韩精品一区| 国产成人av一区二区三区在线观看| 91麻豆精品国产无毒不卡在线观看 | 99热99精品| 在线视频欧美区| 综合av第一页| 成人综合在线网站| 欧美国产日韩一二三区| 国产精品香蕉一区二区三区| 日韩精品在线一区二区| 老司机精品视频在线| 91精品国产全国免费观看| 日本午夜一本久久久综合| 这里只有精品视频在线观看| 日韩精品成人一区二区在线| 91精品视频网| 日本特黄久久久高潮| 日韩免费电影一区| 国产一区在线观看麻豆| 久久精品综合网| 成人福利视频在线看| 亚洲欧美日韩一区二区| 欧美亚洲愉拍一区二区| 日韩精品国产精品| 久久综合狠狠综合久久综合88| 国产精品一区免费视频| 国产精品入口麻豆九色| 91污片在线观看| 亚欧色一区w666天堂| 欧美一卡二卡三卡| 国产酒店精品激情| 亚洲日本va午夜在线影院| 欧美四级电影网| 久久国产综合精品| 国产精品久久久久久亚洲毛片 | 在线不卡一区二区| 极品瑜伽女神91| 亚洲天堂久久久久久久| 538在线一区二区精品国产| 麻豆精品一区二区| 亚洲欧美一区二区三区孕妇| 日韩一区二区三| 成人免费毛片嘿嘿连载视频| 亚洲国产另类av| 久久久久97国产精华液好用吗| 日本二三区不卡| 精品一区二区三区久久| 亚洲一区视频在线| 日本一区二区三区国色天香 | 国产福利一区在线| 亚洲亚洲人成综合网络| 国产欧美一二三区| 91精品国产综合久久蜜臀| 不卡的av中国片| 久久激情五月激情| 亚洲国产精品久久艾草纯爱| 国产女人18水真多18精品一级做| 欧美精品亚洲二区| 99riav久久精品riav| 国产一区二区三区黄视频 | 欧美精品v国产精品v日韩精品| 国产成+人+日韩+欧美+亚洲| 亚洲va韩国va欧美va精品| 国产精品国产精品国产专区不片 | 成人v精品蜜桃久久一区| 秋霞午夜av一区二区三区| 亚洲一区影音先锋| 亚洲视频网在线直播| 国产性天天综合网| 精品国产凹凸成av人导航| 欧美久久久久久久久| 欧美性受极品xxxx喷水| 色呦呦国产精品| 成人精品gif动图一区| 国产一区二区三区综合| 日本特黄久久久高潮| 三级亚洲高清视频| 亚洲高清免费一级二级三级| 亚洲乱码国产乱码精品精小说| 国产视频一区二区在线观看| 久久蜜桃av一区二区天堂| 精品日韩在线观看| 日韩欧美国产电影| 日韩免费高清电影| 欧美大片日本大片免费观看| 日韩午夜在线影院| 日韩精品在线网站| 2022国产精品视频| 久久丝袜美腿综合| 国产日本亚洲高清| 国产精品视频免费看| 国产精品色在线观看| 中文字幕在线一区| 一区二区三区中文字幕| 夜夜精品视频一区二区| 亚洲最新视频在线播放| 午夜精品久久久久久久99水蜜桃| 午夜精品一区二区三区电影天堂| 视频一区二区中文字幕| 日本女优在线视频一区二区| 精品一区二区日韩| 高清视频一区二区| 色综合色狠狠综合色| 欧美人与性动xxxx| 久久嫩草精品久久久久| 国产精品你懂的在线欣赏| 亚洲美女电影在线| 午夜精品视频在线观看| 国产麻豆9l精品三级站| 成人av手机在线观看| 欧美最新大片在线看| 欧美一区日韩一区| 国产精品网友自拍| 亚洲成人免费av| 国产精品18久久久久久久网站| 成人黄色av电影| 欧美日韩另类国产亚洲欧美一级| 欧美一卡二卡在线| 中文字幕一区二区三区四区| 亚洲狠狠爱一区二区三区| 久久国产福利国产秒拍| eeuss国产一区二区三区| 欧美日韩在线综合| 国产日韩综合av| 偷拍与自拍一区| 粉嫩一区二区三区性色av| 欧美精品 国产精品| 国产精品网站在线观看| 日韩av电影天堂| 91在线丨porny丨国产| 日韩亚洲欧美一区二区三区|