亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? libsvmaux.c

?? Support Vector Machines is a powerful methodology for solving problems in nonlinear classification a
?? C
?? 第 1 頁 / 共 2 頁
字號:
              mexPrintf("SVM type:    EPS-SVR\n");              mexPrintf("Bound C:     %g\n",C);              mexPrintf("Epsilon:     %g\n",e);            }            else {              mexPrintf("SVM type:    NU-SVR\n");              mexPrintf("Bound C:     %g\n",C);              mexPrintf("Nu:          %g\n",e);            }            break;    case 1: if (opt->style == 0) {              mexPrintf("SVM type:    C-SVC\n");              mexPrintf("Bound C:     %g\n",C);            }            else {              mexPrintf("SVM type:    NU-SVC\n");              mexPrintf("Nu:          %g\n",C);            }            break;    case 2: mexPrintf("SVM type:    ONE-CLASS\n");            mexPrintf("Nu:          %g\n",C);            break;  }  /* --- Kernel section --- */  switch ( ker->type ) {    case KERNEL_LINEAR:      mexPrintf("Kernel:      Linear\n");      break;    case KERNEL_POLY:      mexPrintf("Kernel:      Polynomial\n");      mexPrintf("Degree:      %d\n",ker->degree);      mexPrintf("Offset:      %g\n",ker->offset);      break;    case KERNEL_RADIAL:      mexPrintf("Kernel:      Gauss\n");   /* 'radial' only for internal use */      mexPrintf("Width:       %g\n",1/sqrt(2*ker->gamma));      break;    case KERNEL_GAUSS:      mexPrintf("Kernel:      Gauss\n");      mexPrintf("Width:       Vector, size %d\n", ker->gamman);      break;    case KERNEL_TANH:      mexPrintf("Kernel:      Tanh\n");      mexPrintf("Gamma:       %g\n",ker->gamma);      mexPrintf("Offset:      %g\n",ker->offset);      break;  }  /* --- Options section --- */  if ( svmproblem==1 && opt->style==0 ) {    mexPrintf("Weight:      %g\n",opt->weight);    mexPrintf("Wght. Label: %d\n",opt->wlabel);  }  mexPrintf("Tolerance:   %g\n",opt->tol);  mexPrintf("Shrinking:   %s\n",(opt->shrink ? "Yes" : "No"));  mexPrintf("Cache:       %2.2g MB\n",opt->cache);  if ( svmproblem==1 )    mexPrintf("Probability: %s\n",(opt->prob ? "Yes" : "No"));  mexPrintf("--------------------\n");  return 0;}/*----------------------------------------------------------------------------*\| Dump information about solution into MATLAB window.                          |\*----------------------------------------------------------------------------*/int dumpSolution(             /* Return: always 0 */  options *opt,               /* [in] option struct */  struct svm_model *model,    /* [in] the model calculated by LIBSVM */  struct svm_problem *prob,   /* [in] LIBSVM problem struct */  double  *y,                 /* [in] output data */  double   C,                 /* [in] C or nu */  int      svmproblem,        /* [in] 0: SVR, 1: SVC, 2: One-Class */  long     N,                 /* [in] number of data */  int      adjust )           /* [in] 0: -, 1: adjust to labels +1/-1 */{  mexPrintf("SOLUTION\n");  mexPrintf("#SVs:        %d\n",model->l);  /* --- determin bounded support vectors --- */  if ( model->sv_coef != NULL && (model->param.svm_type == C_SVC ||                                  model->param.svm_type == EPSILON_SVR ||                                  model->param.svm_type == NU_SVR) ) {    long i;                         /* counter */    long bsv = 0;                   /* number of bounded SVs */    for (i=0; i<model->l; i++) {    /* determine bounded SVs */      if ( fabs(model->sv_coef[0][i]) == C )        bsv++;    }    mexPrintf("#BSVs:       %d\n",bsv);  }  /* --- compute bias term --- */  if (model->rho != NULL) {    double f = 1;                 /* correction factor, see buildSolution */    if (adjust>0 && model->label != NULL)      f = model->label[0];    mexPrintf("Bias:        %g\n",-f*model->rho[0]);  }  /* --- compute epsilon for NU-SVR --- */  if (opt->style == 1 && svmproblem == 0) {    double eps = 0;               /* computed epsilon value */    long   c = 0;                 /* number of free SVs */    long   k,g;                   /* counters */    for (k=0; k<model->l; k++) {      if (fabs(model->sv_coef[0][k]) < C && model->sv_coef[0][k] != 0.0) {        for (g=0; g<N; g++) {          if (prob->x[g] == model->SV[k]) {            eps += fabs(y[g]-svm_predict(model,model->SV[k]));            c++;            break;          }        }      }    }    mexPrintf("Epsilon:     %g\n",eps/c);  }  mexPrintf("--------------------\n");  return 0;}/*----------------------------------------------------------------------------*\| Convert options to LIBSVM parameter struct.                                  |\*----------------------------------------------------------------------------*/int convOptions(                /* Return: always 0 */  struct svm_parameter *param,  /* [out] LIBSVM parameter struct */  double C,                     /* [in] upper bound for Lagrange multipliers */  double e,                     /* [in] epsilon for regression case */  kernel *ker,                  /* [in] kernel struct */  options *opt,                 /* [in] options struct */  int svmproblem )              /* [in] 0: SVR, 1: SVC, 2: One-Class */{  param->eps = opt->tol;  param->cache_size = opt->cache;  param->shrinking = opt->shrink;  param->probability = opt->prob;  /* --- set SVM type, C, epsilon and nu --- */  if (svmproblem == 1) {            /* classification case */    if (opt->style == 1) {          /* the 'nu' case check */      param->nu = C;      param->svm_type = NU_SVC;    }    else {      param->C = C;      param->svm_type = C_SVC;    }  }  else if (svmproblem == 0 ) {      /* regression case */    param->C = C;    if (opt->style == 1) {          /* the 'nu' case check */      param->nu = e;      param->svm_type = NU_SVR;    }    else {      param->p = e;      param->svm_type = EPSILON_SVR;    }  }  else {                            /* one-class case */    param->nu = C;    param->svm_type = ONE_CLASS;  }  /* --- acivate weighting if needed --- */  if (opt->weight == 1) {    param->nr_weight = 0;    param->weight_label = NULL;    param->weight = NULL;  }  else {    param->nr_weight = 1;    param->weight_label = (int*)malloc(1*sizeof(int));    param->weight_label[0] = opt->wlabel;    param->weight = (double*)malloc(sizeof(double));    param->weight[0] = opt->weight;  }  /* --- get parameters from given MATLAB option struct --- */  if (ker->type == KERNEL_LINEAR) {       /* if it shall be a linear kernel */    param->kernel_type = LINEAR;          /* make it a linear one */  }  else if (ker->type == KERNEL_POLY) {    /* if it shall be a polyl kernel */    param->kernel_type = POLY;            /* make it a polynomial one */    param->gamma = 1;                     /* k(x,y)=(gamma*x'*y+coef0)^degree */    param->degree = ker->degree;          /* degree of polynomial kernel */    param->coef0 = ker->offset;           /* coef0 is offset in svmas */  }  else if (ker->type == KERNEL_TANH) {    /* if it shall be a tanh kernel */    param->kernel_type = SIGMOID;         /* make it a sigmoid one */    param->gamma = ker->gamma;            /* k(x,y)=(gamma*x'*y+coef0)^degree */    param->coef0 = ker->offset;           /* coef0 is offset in svmas */  }  else if (ker->type == KERNEL_RADIAL) {  /* if it shall be a Gauss kernel */    param->kernel_type = RBF;             /* use the RBF one, it's the same */    param->gamma = ker->gamma;            /* and use the same gamma-value */  }  return 0;}/*----------------------------------------------------------------------------*\| Convert data to LIBSVM problem struct.                                       |\*----------------------------------------------------------------------------*/int convData(                 /* Return: always 0 */  struct svm_problem *prob,   /* [out] LIBSVM problem struct */  double *x,                  /* [in] input data */  double *y,                  /* [in] output data */  int n,                      /* [in] input dimension */  long N )                    /* [in] number of data */{  struct svm_node *x_space;   /* svm_nodes needed to create the svm-problem */  int j1;                     /* rows in x-matrix */  int i;                      /* coloumns in x-matrix */  int j2;                     /* counter for svm_nodes*/  /* --- allocate needed memory --- */  prob->l = N;  prob->x = mxMalloc(N*sizeof(struct svm_node *));  prob->y = mxMalloc(N*sizeof(double));  x_space = mxMalloc(N*(n+1)*sizeof(struct svm_node));  /* --- build the SVM nodes --- */  j1 = 0;  for(i=0;i<N;i++) {                   /* iterate rows */    prob->x[i] = x_space+j1;           /* set pointer to the svm_node */    if (y==NULL)      prob->y[i] = 1;    else      prob->y[i] = y[i];    for(j2=0;j2<n;j2++) {              /* iterate columns in current row */      x_space[j1].index=j2;            /* create index-value of svm_node */      x_space[j1].value=x[i+N*j2];     /* create value-value of svm_node */      j1++;    }    x_space[j1].index = -1;    j1++;  }  return 0;}/*----------------------------------------------------------------------------*\| Build MATLAB solution from LIBSVM model.                                     |\*----------------------------------------------------------------------------*/int buildSolution(           /* Return: always 0 */  mxArray **solut,           /* [out] solution struct (empty on entry) */  const mxArray *mlker,      /* [in] kernel as provided by MATLAB */  struct svm_model *model,   /* [in] the model calculated by LIBSVM */  struct svm_problem *prob,  /* [in] LIBSVM problem struct */  options *opt,              /* [in] options struct */  int nlhs,                  /* [in] number of output arguments */  int svmproblem,            /* [in] 0: SVR, 1: SVC, 2: One-Class */  long N )                   /* [in] number of input data */{  long i,j,k,g;              /* counters */  long Nsv;                  /* number of support vectors */  long n;                    /* input dimension */  double f;                  /* correction factor */  double *a;                 /* coefficients in MATLAB struct */  double *x;                 /* support vectors in MATLAB struct */  double **sv_coef;          /* computed SVM coefficients */  struct svm_node **SV;      /* support vectors */  struct svm_node *row;      /* row of SV */  const char *fields[] = {FNAME_COEF, FNAME_VECT, FNAME_BIAS, FNAME_KER};  /* --- determine correction factor --- */  f = 1;                     /* regression, and class. with arbitrary labels */  if (nlhs>1 && model->label != NULL)  /* class. with labels +1 and -1 */    f = model->label[0];     /* first label is regarded as +1 (!) */  /* --- return reduced coef vector, indices, and bias --- */  if (nlhs>2) {    solut[0] = mxCreateDoubleMatrix(model->l,1,mxREAL);    solut[1] = mxCreateDoubleMatrix(model->l,1,mxREAL);    solut[2] = mxCreateDoubleMatrix(1,1,mxREAL);    mxGetPr(solut[2])[0] = -f*model->rho[0];    for (g=0;g<model->l;g++) {      for (k=0;k<N;k++) {        if (prob->x[k] == model->SV[g] ) {          mxGetPr(solut[0])[g] = f*model->sv_coef[0][g];          mxGetPr(solut[1])[g] = k+1;          break;        }      }    }  }  /* --- return complete coef vector, and bias --- */  else if (nlhs>1) {    solut[0] = mxCreateDoubleMatrix(N,1,mxREAL);    solut[1] = mxCreateDoubleMatrix(1,1,mxREAL);    mxGetPr(solut[1])[0] = -f*model->rho[0];    for (g=0;g<model->l;g++) {      for (k=0;k<N;k++) {        if (model->SV[g] == prob->x[k]) {          mxGetPr(solut[0])[k] = f*model->sv_coef[0][g];          break;        }      }    }  }  /* --- return SVM struct --- */  else {    Nsv = model->l;    sv_coef = model->sv_coef;    SV = model->SV;    /* find the input dimension */    n = 0;    for (i=0; i<Nsv; i++) {      row = SV[i];      j = 0;      while (row[j].index != -1) {        if (row[j].index > n)          n = row[j].index;        j++;      }    }    n++;  /* because indices start from 0 */    /* prepare the solution struct */    *solut = mxCreateStructMatrix(1,1,4,fields);    mxSetField(*solut,0,FNAME_COEF,mxCreateDoubleMatrix(Nsv,1,mxREAL));    mxSetField(*solut,0,FNAME_VECT,mxCreateDoubleMatrix(Nsv,n,mxREAL));    a = mxGetPr(mxGetField(*solut,0,FNAME_COEF));    x = mxGetPr(mxGetField(*solut,0,FNAME_VECT));    mxSetField(*solut,0,FNAME_BIAS,mxCreateDoubleMatrix(1,1,mxREAL));    mxGetPr(mxGetField(*solut,0,FNAME_BIAS))[0] = -f * *(model->rho);    mxSetField(*solut,0,FNAME_KER,mxDuplicateArray(mlker));    if ( svmproblem == 1 && model->label != NULL ) {      mxAddField(*solut,FNAME_LABEL);      mxSetField(*solut,0,FNAME_LABEL,mxCreateDoubleMatrix(1,2,mxREAL));      mxGetPr(mxGetField(*solut,0,FNAME_LABEL))[0] = model->label[0];      mxGetPr(mxGetField(*solut,0,FNAME_LABEL))[1] = model->label[1];    }    if ( svmproblem == 1 && opt->prob != 0 &&         model->probA != NULL && model->probB != NULL) {      mxAddField(*solut,FNAME_PROB);      mxSetField(*solut,0,FNAME_PROB,mxCreateDoubleMatrix(1,2,mxREAL));      mxGetPr(mxGetField(*solut,0,FNAME_PROB))[0] = model->probA[0];      mxGetPr(mxGetField(*solut,0,FNAME_PROB))[1] = model->probB[0];    }    /* copy LIBSVM model to MATLAB */    for (i=0; i<Nsv; i++) {      a[i] = f * sv_coef[0][i];  /* we are using only output #0 */      row = SV[i];      j = 0;      while (row[j].index != -1) {        /* x points to a row of the MATLAB matrix */        x[Nsv*(row[j].index)] = row[j].value;        j++;      }      x++;    }  }  return 0;}

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品国产成人系列| 麻豆91在线观看| 中文字幕一区二区不卡| 亚洲国产精品成人综合色在线婷婷 | 99久久综合国产精品| 国产精品亚洲视频| 国产精品996| 粉嫩蜜臀av国产精品网站| 成人午夜免费视频| 99综合电影在线视频| 91欧美激情一区二区三区成人| 一本色道**综合亚洲精品蜜桃冫| 一本久道中文字幕精品亚洲嫩| 在线欧美小视频| 在线不卡a资源高清| 91精品国产乱| 26uuu精品一区二区| 日本一区二区三区久久久久久久久不 | 亚洲精品久久久久久国产精华液| 亚洲女子a中天字幕| 亚洲成人av资源| 毛片一区二区三区| 国产一区二区免费看| 成人美女在线观看| 97久久精品人人做人人爽50路 | 欧美高清在线一区二区| 国产精品成人免费在线| 亚洲精品va在线观看| 婷婷久久综合九色综合伊人色| 日韩国产精品久久久| 精久久久久久久久久久| 国产一区二区在线观看免费| 成人av综合在线| 欧美性做爰猛烈叫床潮| 日韩女优av电影| 中文字幕乱码亚洲精品一区| 亚洲黄色在线视频| 青娱乐精品视频| 国产成人h网站| 欧美性做爰猛烈叫床潮| 欧美va日韩va| 亚洲天堂成人网| 免费成人性网站| 99精品欧美一区二区蜜桃免费| 欧美人妖巨大在线| 国产亚洲人成网站| 伊人性伊人情综合网| 九九在线精品视频| 91亚洲永久精品| 日韩欧美黄色影院| 亚洲视频一区二区在线观看| 日产国产欧美视频一区精品| 成人永久免费视频| 91精品国产91综合久久蜜臀| 日本一区二区三区四区在线视频| 午夜精品免费在线| 播五月开心婷婷综合| 91精品国产高清一区二区三区蜜臀 | 精品国产乱码久久久久久图片 | 免费av成人在线| 91丝袜高跟美女视频| 精品国产免费视频| 亚洲.国产.中文慕字在线| 国产.精品.日韩.另类.中文.在线.播放| 日本乱人伦aⅴ精品| 久久精品视频在线免费观看| 亚洲国产毛片aaaaa无费看 | 日韩一区二区在线播放| 《视频一区视频二区| 麻豆国产欧美一区二区三区| 在线观看免费视频综合| 国产精品欧美一级免费| 美女在线一区二区| 欧美丝袜丝交足nylons图片| 中文字幕在线免费不卡| 激情综合色播激情啊| 欧美日韩国产大片| 亚洲欧美激情插 | 国产欧美一区二区三区鸳鸯浴| 亚洲国产人成综合网站| av亚洲精华国产精华精华 | 亚洲欧美视频在线观看| 国产一区 二区 三区一级| 欧美一区二区久久| 亚洲成人免费看| 色视频欧美一区二区三区| 中国av一区二区三区| 国产一区视频网站| 日韩欧美中文一区| 日韩激情一二三区| 欧美色欧美亚洲另类二区| 综合久久久久久久| 成人av动漫在线| 欧美激情在线观看视频免费| 久久丁香综合五月国产三级网站| 538在线一区二区精品国产| 亚洲a一区二区| 欧美久久久久久久久中文字幕| 一区二区三区在线高清| 色综合久久久久综合体桃花网| 亚洲天堂精品在线观看| 9i在线看片成人免费| 亚洲天堂免费看| 91色在线porny| 一区二区在线观看视频在线观看| av不卡在线观看| 亚洲欧美乱综合| 欧美在线高清视频| 亚洲成人av一区二区三区| 精品视频123区在线观看| 亚洲国产中文字幕在线视频综合| 国产日产欧产精品推荐色| 国产精品538一区二区在线| 国产日韩欧美不卡| av激情成人网| 亚洲精品videosex极品| 欧美三区在线观看| 日本在线不卡视频一二三区| 欧美成人女星排行榜| 国产一区二区主播在线| 国产精品女同互慰在线看| 91亚洲资源网| 午夜精品一区二区三区免费视频 | 91片黄在线观看| 亚洲最新视频在线观看| 欧美日韩一区二区电影| 美腿丝袜亚洲一区| 国产欧美日韩另类视频免费观看| 99久久综合色| 亚洲成人一区二区| 2023国产精品自拍| 成人黄色av电影| 亚洲一卡二卡三卡四卡| 欧美一级二级三级乱码| 国产一区二区三区电影在线观看| 国产精品国产三级国产aⅴ原创| 欧洲一区二区三区在线| 男男gaygay亚洲| 欧美国产1区2区| 欧美日本一区二区三区| 国产精一品亚洲二区在线视频| ...av二区三区久久精品| 欧美日韩不卡一区| 国产一区二区美女| 夜夜精品视频一区二区| 日韩欧美国产小视频| 99亚偷拍自图区亚洲| 日韩精品一级中文字幕精品视频免费观看 | 亚洲综合一二三区| 欧美成人vr18sexvr| 波多野结衣在线aⅴ中文字幕不卡| 亚洲午夜精品久久久久久久久| 精品国产免费视频| 91官网在线免费观看| 黄色资源网久久资源365| 一区二区三区在线观看欧美| 精品动漫一区二区三区在线观看| 91香蕉视频污在线| 精品一区二区三区在线视频| 一区二区在线观看av| 26uuu亚洲综合色| 欧美日韩免费一区二区三区| 成人激情免费视频| 免费观看在线综合色| 亚洲精品国产第一综合99久久| 久久久久久综合| 在线成人高清不卡| fc2成人免费人成在线观看播放| 全部av―极品视觉盛宴亚洲| 亚洲人成影院在线观看| 久久亚洲影视婷婷| 欧美肥胖老妇做爰| 一本到高清视频免费精品| 国产一区二区三区黄视频 | 99免费精品在线观看| 久久99国产精品久久99| 亚洲一区二区欧美日韩| 国产精品入口麻豆原神| 欧美videos大乳护士334| 欧美日韩综合在线| 97久久超碰国产精品电影| 国产一区二区三区最好精华液| 亚洲va欧美va天堂v国产综合| 亚洲同性同志一二三专区| 国产视频一区二区在线观看| 91精品麻豆日日躁夜夜躁| 欧美在线一二三| 91女人视频在线观看| 成人免费视频一区| 国产精品一二三区| 久久精品国产一区二区三区免费看| 亚洲国产一区二区三区青草影视 | 奇米一区二区三区| 亚洲精品五月天| 18欧美乱大交hd1984| 中文字幕欧美三区| 国产亚洲一本大道中文在线| 欧美www视频| 欧美zozo另类异族| 精品第一国产综合精品aⅴ|