?? libsvmopt.m
字號:
% LIBSVMOPT Optimize Support Vector Machine with LIBSVM.%% SVM Classification:% svm = libsvmopt(x,y,C,ker); % svm = libsvmopt(x,y,nu,ker,'style','nu'); %% One-Class SVM:% svm = libsvmopt(x,[],nu,ker);%% SVM Regression:% svm = libsvmopt(x,y,C,e,ker); % svm = libsvmopt(x,y,C,nu,ker,'style','nu'); %% Passing Options:% svm = libsvmopt(...,'opt1',value1,'opt2',value2,...); % svm = libsvmopt(...,opt); %% Multiple Output Arguments:% [a,b] = libsvm(...);% [a,I,b] = libsvm(...);%% Input Arguments:% x - Input data (size N*n). In general, x may be a multidimensional array% with last dimension (input space) of size n.% y - Output data (size N*1). In general, y may be a multidimensional array% with scalar last dimension (output space). For classification problems,% y must contain not more than 2 different class labels; if the solution% is requested as [a,b] or [a,I,b], these values must be -1 and +1.% C - Upper bound for Lagrange multipliers (positive scalar).% e - Insensitivity zone for regression (non-negative scalar).% nu - Parameter nu (0 < nu <= 1).% ker - Kernel function (struct, see below).% opt - Optimizer options (struct, see below).%% Output Arguments:% svm - Support vector machine (struct, see below).% a - Coefficient vector (size N*1, or Nsv*1 if "I" is requested).% I - Index vector (size Nsv*1).% b - Bias term (scalar).%% Kernel Function:% All information about the kernel function is stored in a struct variable with% the following fields:% type - linear : k(x,y) = x'*y% poly : k(x,y) = (x'*y+c)^d% gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2)% tanh : k(x,y) = tanh(g*x'*y+c)% degree - Degree d of polynomial kernel (positive scalar).% offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh).% width - Width s of Gauss kernel (positive scalar).% gamma - Slope g of the tanh kernel (positive scalar).%% Standard Output Format:% The output is a struct containing all information needed to simulate the SVM:% coef - Coefficients of the support vectors (size Nsv*1).% vect - Support vectors (size Nsv*n, sub-matrix of x).% ker - Kernel function (struct, see above).% bias - Bias term (scalar).% label - Vector of class labels (size 1*2), only for classification.% prob - Probability parameters (size 1*2), only if requested.%% Alternative Output Format:% The solution can also be requested as coefficient vector and bias term [a,b],% where "a" contains the coefficients in the order of the input data. If an% additional index vector is requested [a,I,b], then "a" contains only nonzero% entries and "I" their positions with respect to the input data. In both cases,% class labels +1 and -1 must be used for classification, since no information% about the labels is returned. The sign of the decision function f(x) is% adjusted so that sign(f(x)) is the predicted class label.%% Options:% LIBSVM can be adjusted by several options, which are passed as a struct% variable or as key/value pairs. If an option is omitted, its default value is% used. Invalid fields produce warnings. The options are:% style - SVM style ('nu' or 'C'/'eps'). Default: 'C'/'eps'% tol - Tolerance for KKT check (positive scalar). Default: 1e-3.% shrink - Shrinking heuristics (0/1). Default: 1% weight - Weight for class "wlabel" (positive scalar). Default: 1% wlabel - Label of class to be weighted (scalar). Default: -1% cache - Cache size. It can be given as string in kB or MB, or as number of% rows (where a row contains N elements). Default: '40MB'% prob - Compute probability information for classification (0/1).% Default: 0% verbose - Verbosity level (0/1). Default: 0% ------------------------------------------------------------------------------% MATLAB Interface for LIBSVM, Version 1.2%% Copyright (C) 2004-2005 Michael Vogt% Written by Michael Vogt, Atanas Ayarov and Bennet Gedan% % This program is free software; you can redistribute it and/or modify it% under the terms of the GNU General Public License as published by the Free% Software Foundation; either version 2 of the License, or (at your option)% any later version.% ------------------------------------------------------------------------------
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -