亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? type_gneuralnet.html

?? 一個非常有用的開源代碼
?? HTML
字號:
<html><head><title>Generated Documentation</title></head><body>	<image src="headerimage.png">	<br><br><table><tr><td><big><big><big style="font-family: arial;"><b>GNeuralNet</b></big></big></big><br>extends <a href="type_GSupervisedLearner.html">GSupervisedLearner</a><br></td><td></td></tr></table><br><br><big><big><i>Constructors (public)</i></big></big><br><div style="margin-left: 40px;"><big><b>GNeuralNet</b></big>(<a href="type_GArffRelation.html">GArffRelation</a>* pRelation)<br></div><br><big><big><i>Destructors</i></big></big><br><div style="margin-left: 40px;"><big><b>~GNeuralNet</b></big>()<br></div><br><big><big><i>Virtual (public)</i></big></big><br><div style="margin-left: 40px;">void <big><b>Eval</b></big>(double* pRow)<br><div style="margin-left: 80px;"><font color=brown> Evaluates the input values in the provided row and deduce the output values</font></div><br>void <big><b>Train</b></big>(<a href="type_GArffData.html">GArffData</a>* pData)<br><div style="margin-left: 80px;"><font color=brown> Splits the provided data into a training and validation set and trains the network. To set the ratio, use SetTrainingPortion.</font></div><br></div><br><big><big><i>Public</i></big></big><br><div style="margin-left: 40px;">void <big><b>AddLayer</b></big>(int nNodes)<br><div style="margin-left: 80px;"><font color=brown> Adds a layer to the network.  (The input and output layers are implicit, so you only need to add the hidden layers before calling Train.)  The first hidden layer you add will be ajacent to the output layer.  The last hidden layer you add will be ajacent to the input layer.  It's not common to add more than two hidden layers because that results in large training times.</font></div><br><a href="type_GArffRelation.html">GArffRelation</a>* <big><b>GetInternalRelation</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Returns the Relation corresponding to the internal data. This relation will contain all continuous attributes and the inputs and outputs will correspond to the actual input and output neurons in the network topology.</font></div><br>int <big><b>GetWeightCount</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Returns the number of weights in the network</font></div><br>void <big><b>GetWeights</b></big>(double* pOutWeights)<br><div style="margin-left: 80px;"><font color=brown> Serializes the network weights into an array of doubles. The number of doubles in the array can be determined by calling GetWeightCount().</font></div><br>void <big><b>ReleaseInternalData</b></big>()<br><div style="margin-left: 80px;"><font color=brown> For efficiency purposes the neural net produces an internal copy of the training data with values normalized to ranges that the neural net can handle. This method tells the neural net that training is complete so it's okay to free up that memory.</font></div><br>void <big><b>SetAcceptableMeanSquareError</b></big>(double d)<br><div style="margin-left: 80px;"><font color=brown> If the mean square error ever falls below this value, training will stop.  Note that if you use this as the primary stopping criteria, you will be prone to overfitting issues.  To avoid overfitting, keep this number very small so it will stop based on other conditions.  This is more of a safety-harness for cases where overfitting is okay (ie compression) so that it will stop if the results are good enough even if it can keep getting better.</font></div><br>void <big><b>SetIterationsPerValidationCheck</b></big>(int n)<br><div style="margin-left: 80px;"><font color=brown> Sets the number of iterations that will be performed before each time the network is tested again with the validation set to determine if we have a better best-set of weights, and whether or not it's achieved the termination condition yet. (An iteration is defined as a single pass through all rows in the training set.)</font></div><br>void <big><b>SetLearningDecay</b></big>(double d)<br><div style="margin-left: 80px;"><font color=brown> Set the rate at which the learning rate decays.  (The learning rate will be multiplied by this value after every pass through the training data.)</font></div><br>void <big><b>SetLearningRate</b></big>(double d)<br><div style="margin-left: 80px;"><font color=brown> Set the rate of convergence</font></div><br>void <big><b>SetMaximumEpochs</b></big>(int n)<br><div style="margin-left: 80px;"><font color=brown> Sets the maximum number of times per pass to train with all the data.</font></div><br>void <big><b>SetMomentum</b></big>(double d)<br><div style="margin-left: 80px;"><font color=brown> Momentum has the effect of speeding convergence and helping the gradient descent algorithm move past some local minimums</font></div><br>void <big><b>SetRunEpochs</b></big>(int n)<br><div style="margin-left: 80px;"><font color=brown> Training will terminate when this number of epochs are performed without finding another best epoch for the validation set.</font></div><br>void <big><b>SetTrainingPortion</b></big>(double d)<br><div style="margin-left: 80px;"><font color=brown> Set the portion of the data that will be used for training. The rest will be used for validation.</font></div><br>void <big><b>SetWeights</b></big>(double* pWeights)<br><div style="margin-left: 80px;"><font color=brown> Sets all the weights from an array of doubles. The number of doubles in the array can be determined by calling GetWeightCount().</font></div><br>int <big><b>Train</b></big>(<a href="type_GArffData.html">GArffData</a>* pTrainingData, <a href="type_GArffData.html">GArffData</a>* pValidationData)<br><div style="margin-left: 80px;"><font color=brown> Train the network until the termination condition is met. Returns the number of epochs required to train it.  This is sort of an all-in-one method that calls TrainInit, followed by several calls to TrainEpoch and TrainValidate.</font></div><br>int <big><b>TrainBatch</b></big>(<a href="type_GArffData.html">GArffData</a>* pTrainingData, <a href="type_GArffData.html">GArffData</a>* pValidationData)<br><div style="margin-left: 80px;"><font color=brown> Same as Train except it uses batch updates instead of incremental updates</font></div><br>void <big><b>TrainEpoch</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Trains with a single epoch</font></div><br>void <big><b>TrainInit</b></big>(<a href="type_GArffData.html">GArffData</a>* pTrainingData, <a href="type_GArffData.html">GArffData</a>* pValidationData)<br><div style="margin-left: 80px;"><font color=brown> This must be called before you call TrainEpoch</font></div><br>double <big><b>TrainValidate</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Measures the mean squared error against the internal validation set</font></div><br></div><br><big><big><i>Protected</i></big></big><br><div style="margin-left: 40px;">void <big><b>Criticize</b></big>(double* pModel)<br><div style="margin-left: 80px;"><font color=brown> This computes the error on the output nodes and uses backpropagation to assign the appropriate amount of error to all upstream nodes</font></div><br>void <big><b>EvalInternal</b></big>(double* pRow)<br><div style="margin-left: 80px;"><font color=brown> Evaluates a row of data for the internal relation.  It doesn't set any output values, it just leaves those in the output nodes so it's safe to pass the original training data in to this method.</font></div><br>void <big><b>ExternalToInternalData</b></big>(<a href="type_GArffData.html">GArffData</a>* pExternal, <a href="type_GArffData.html">GArffData</a>* pInternal)<br><div style="margin-left: 80px;"><font color=brown> Converts a collection of external data to the internal format</font></div><br>void <big><b>InputsToInternal</b></big>(double* pExternal, double* pInternal)<br><div style="margin-left: 80px;"><font color=brown> Convert all the input values to the internal representation</font></div><br>void <big><b>MakeInputLayer</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Adds the input layer with the appropriate number of nodes corresponding to the number if input attributes in the relation.</font></div><br>void <big><b>MakeInternalRelationAndOutputLayer</b></big>()<br>void <big><b>MeasureMinAndRanges</b></big>(<a href="type_GArffData.html">GArffData</a>* pTrainingData)<br><div style="margin-left: 80px;"><font color=brown> Measures the min and range of every attribute in the external training set.  This data is used when converting continuous values between the internal and external format</font></div><br>void <big><b>OutputsToExternal</b></big>(double* pInternal, double* pExternal)<br><div style="margin-left: 80px;"><font color=brown> Convert the internal output values to the external representation</font></div><br>void <big><b>OutputsToInternal</b></big>(double* pExternal, double* pInternal)<br><div style="margin-left: 80px;"><font color=brown> Convert all the output values to the internal representation</font></div><br>void <big><b>PrintNeurons</b></big>()<br>void <big><b>ReadOutput</b></big>(double* pRow)<br>void <big><b>RestoreBestWeights</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Restores the best known set of weights</font></div><br>void <big><b>UpdateBestWeights</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Remembers the current weights as the best set known so far</font></div><br></div><br></body></html>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产岛国毛片在线| 国产九色精品成人porny | 国产九色精品成人porny| 色综合天天综合给合国产| 精品国产伦一区二区三区免费| 亚洲男女一区二区三区| 国产不卡在线一区| 亚洲精品一区在线观看| 亚洲超丰满肉感bbw| 91丝袜美腿高跟国产极品老师 | 99国产精品视频免费观看| 欧美一区二区三区在线看| 中文字幕成人网| 久久精品国产久精国产| 欧美亚洲动漫制服丝袜| 亚洲欧美一区二区三区极速播放 | 美女诱惑一区二区| 欧美吞精做爰啪啪高潮| 国产精品久久久久aaaa樱花| 国产一区二区成人久久免费影院| 欧美一区二区播放| 日韩av在线免费观看不卡| 欧美性一级生活| 一区二区三区在线视频免费观看| 91性感美女视频| 国产精品久久久久久久久免费樱桃 | 亚洲女与黑人做爰| av激情成人网| 日韩码欧中文字| 91视视频在线观看入口直接观看www| 国产欧美日韩三区| 国产69精品久久777的优势| 久久久久99精品国产片| 高清不卡一区二区| 欧美高清在线视频| 成人福利在线看| 亚洲欧美一区二区在线观看| 91在线观看成人| 一区二区欧美国产| 911精品国产一区二区在线| 亚洲h在线观看| 欧美日韩高清影院| 欧美aaa在线| 国产亚洲va综合人人澡精品| 不卡影院免费观看| 亚洲美女屁股眼交3| 欧美欧美欧美欧美| 精彩视频一区二区| 国产精品欧美一区喷水| 在线免费观看不卡av| 午夜精品一区二区三区免费视频 | 99久久久无码国产精品| 亚洲综合一二三区| 欧美一二三区在线| 国产乱子轮精品视频| 亚洲婷婷国产精品电影人久久| 欧亚洲嫩模精品一区三区| 日本视频中文字幕一区二区三区| 精品国产凹凸成av人导航| 99国产精品久久久久久久久久久 | 亚洲精品国久久99热| 欧美日韩国产a| 成人网在线播放| 天堂蜜桃91精品| 欧美激情资源网| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 日日摸夜夜添夜夜添精品视频| 久久综合狠狠综合久久综合88| www.亚洲色图.com| 青青青伊人色综合久久| 国产精品灌醉下药二区| 欧美久久久久免费| 成人黄色小视频| 另类专区欧美蜜桃臀第一页| 中文字幕在线一区| 日韩视频在线一区二区| av中文一区二区三区| 蜜桃精品视频在线| 一区二区激情小说| 欧美激情在线看| 91.com视频| 91国产免费看| www.综合网.com| 黄色日韩网站视频| 日韩不卡免费视频| 亚洲一区在线视频观看| 国产精品美日韩| 精品毛片乱码1区2区3区| 欧美午夜影院一区| av一二三不卡影片| 精品在线一区二区三区| 日韩影院免费视频| 亚洲国产日韩综合久久精品| 欧美激情一区二区三区四区| 精品1区2区在线观看| 欧美日韩日日骚| 色吧成人激情小说| 99久久综合国产精品| 国产xxx精品视频大全| 免费成人av资源网| 午夜成人免费电影| 亚洲高清在线精品| 亚洲精品免费在线观看| 中文字幕一区二区在线播放| 欧美极品少妇xxxxⅹ高跟鞋| 久久众筹精品私拍模特| www激情久久| 精品日韩成人av| 欧美大片国产精品| 精品国内二区三区| 精品欧美乱码久久久久久1区2区| 欧美一区二区视频观看视频| 91精品国产91热久久久做人人| 7777精品伊人久久久大香线蕉完整版 | 91精品麻豆日日躁夜夜躁| 欧美日韩在线三区| 欧美巨大另类极品videosbest| 欧美日韩成人在线| 5月丁香婷婷综合| 日韩一级欧美一级| 精品国产青草久久久久福利| 久久夜色精品国产噜噜av| 久久蜜桃香蕉精品一区二区三区| 欧美精品一区男女天堂| 国产欧美日韩另类一区| 亚洲色图视频网站| 国产喷白浆一区二区三区| ...av二区三区久久精品| 一个色在线综合| 日韩国产欧美在线观看| 麻豆传媒一区二区三区| 国产成a人亚洲| 色拍拍在线精品视频8848| 欧美日韩精品三区| 精品av综合导航| 国产精品国产a| 亚洲v日本v欧美v久久精品| 蜜臀av一区二区| 成人在线视频一区二区| 色88888久久久久久影院野外| 在线播放亚洲一区| 久久久久国产精品人| 亚洲最大成人网4388xx| 久久国内精品视频| 成人高清免费观看| 91精品国产综合久久久久久久| 国产精品免费久久久久| 亚洲图片自拍偷拍| 久久不见久久见中文字幕免费| www.亚洲在线| 日韩视频在线一区二区| 综合在线观看色| 精品无码三级在线观看视频| 一本色道亚洲精品aⅴ| 日韩精品一区二区三区蜜臀| 亚洲人成精品久久久久久| 欧美aaa在线| 欧美性做爰猛烈叫床潮| 久久久精品日韩欧美| 天天综合网 天天综合色| 高清在线成人网| 日韩三级.com| 亚洲精品免费在线| 国产精品亚洲一区二区三区在线| 在线观看av一区| 国产精品麻豆网站| 精品一区二区三区不卡| 欧美在线看片a免费观看| 中文字幕精品在线不卡| 精品在线观看免费| 欧美日韩另类一区| 亚洲天堂2014| 国产精品一区2区| 欧美一区二区黄| 夜夜嗨av一区二区三区 | 国产精品一级黄| 欧美一级片在线看| 亚洲网友自拍偷拍| 91麻豆免费看片| 国产精品嫩草99a| 国产精品一区在线| 精品国产精品网麻豆系列| 婷婷激情综合网| 欧洲精品一区二区| 亚洲免费观看在线观看| eeuss鲁片一区二区三区在线看| 久久一区二区三区四区| 九九**精品视频免费播放| 欧美一区二区三区影视| 韩国三级在线一区| 91精品在线免费| 日韩vs国产vs欧美| 4438x亚洲最大成人网| 亚洲免费在线视频一区 二区| 国产iv一区二区三区| 欧美国产国产综合| 成人av高清在线| 亚洲丝袜制服诱惑| 色欧美片视频在线观看| 亚洲女女做受ⅹxx高潮|