?? type_gsupervisedlearner.html
字號:
<html><head><title>Generated Documentation</title></head><body> <image src="headerimage.png"> <br><br><table><tr><td><big><big><big style="font-family: arial;"><b>GSupervisedLearner</b></big></big></big><br><br></td><td></td></tr></table><br><br><big><big><i>Constructors (public)</i></big></big><br><div style="margin-left: 40px;"><big><b>GSupervisedLearner</b></big>(<a href="type_GArffRelation.html">GArffRelation</a>* pRelation)<br></div><br><big><big><i>Destructors</i></big></big><br><div style="margin-left: 40px;"><big><b>~GSupervisedLearner</b></big>()<br></div><br><big><big><i>Abstracts</i></big></big><br><div style="margin-left: 40px;">void <big><b>Eval</b></big>(double* pVector)<br><div style="margin-left: 80px;"><font color=brown> Evaluates the input values in the provided vector and deduce the output values</font></div><br>void <big><b>Train</b></big>(<a href="type_GArffData.html">GArffData</a>* pData)<br><div style="margin-left: 80px;"><font color=brown> Train with the provided data</font></div><br></div><br><big><big><i>Public</i></big></big><br><div style="margin-left: 40px;"><a href="type_GArffRelation.html">GArffRelation</a>* <big><b>GetRelation</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Returns the relation used to construct this learner</font></div><br>double <big><b>MeasureMeanSquaredError</b></big>(<a href="type_GArffData.html">GArffData</a>* pData)<br><div style="margin-left: 80px;"><font color=brown> Computes the mean squared error. If there are multiple output attributes, each one is considered independently. If there are discreet output attributes, a correct classification is considered to be a squared error of 0 and an incorrect classification is a squared error of 1.</font></div><br>double <big><b>MeasurePredictiveAccuracy</b></big>(<a href="type_GArffData.html">GArffData</a>* pData)<br><div style="margin-left: 80px;"><font color=brown> Computes predictive accuracy (the ratio of samples that are correctly classified to total samples). If there is more than one output attribute, each output attribute is evaluated independently. If there are continuous output values, it uses 1-1/(1+(squared error)) as an estimate so that a small squared error will be close to 1 (correct) and a large squared error will be close to 0 (incorrect).</font></div><br></div><br></body></html>
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -