?? mixgauss_mstep.m
字號:
function [mu, Sigma] = mixgauss_Mstep(w, Y, YY, YTY, varargin)% MSTEP_COND_GAUSS Compute MLEs for mixture of Gaussians given expected sufficient statistics% function [mu, Sigma] = Mstep_cond_gauss(w, Y, YY, YTY, varargin)%% We assume P(Y|Q=i) = N(Y; mu_i, Sigma_i)% and w(i,t) = p(Q(t)=i|y(t)) = posterior responsibility% See www.ai.mit.edu/~murphyk/Papers/learncg.pdf.%% INPUTS:% w(i) = sum_t w(i,t) = responsibilities for each mixture component% If there is only one mixture component (i.e., Q does not exist),% then w(i) = N = nsamples, and % all references to i can be replaced by 1.% YY(:,:,i) = sum_t w(i,t) y(:,t) y(:,t)' = weighted outer product% Y(:,i) = sum_t w(i,t) y(:,t) = weighted observations% YTY(i) = sum_t w(i,t) y(:,t)' y(:,t) = weighted inner product% You only need to pass in YTY if Sigma is to be estimated as spherical.%% Optional parameters may be passed as 'param_name', param_value pairs.% Parameter names are shown below; default values in [] - if none, argument is mandatory.%% 'cov_type' - 'full', 'diag' or 'spherical' ['full']% 'tied_cov' - 1 (Sigma) or 0 (Sigma_i) [0]% 'clamped_cov' - pass in clamped value, or [] if unclamped [ [] ]% 'clamped_mean' - pass in clamped value, or [] if unclamped [ [] ]% 'cov_prior' - Lambda_i, added to YY(:,:,i) [0.01*eye(d,d,Q)]%% If covariance is tied, Sigma has size d*d.% But diagonal and spherical covariances are represented in full size.[cov_type, tied_cov, clamped_cov, clamped_mean, cov_prior, other] = ... process_options(varargin,... 'cov_type', 'full', 'tied_cov', 0, 'clamped_cov', [], 'clamped_mean', [], ... 'cov_prior', []);[Ysz Q] = size(Y);N = sum(w);if isempty(cov_prior) %cov_prior = zeros(Ysz, Ysz, Q); %for q=1:Q % cov_prior(:,:,q) = 0.01*cov(Y(:,q)'); %end cov_prior = repmat(0.01*eye(Ysz,Ysz), [1 1 Q]);end%YY = reshape(YY, [Ysz Ysz Q]) + cov_prior; % regularize the scatter matrixYY = reshape(YY, [Ysz Ysz Q]);% Set any zero weights to one before dividing% This is valid because w(i)=0 => Y(:,i)=0, etcw = w + (w==0); if ~isempty(clamped_mean) mu = clamped_mean;else % eqn 6 %mu = Y ./ repmat(w(:)', [Ysz 1]);% Y may have a funny size mu = zeros(Ysz, Q); for i=1:Q mu(:,i) = Y(:,i) / w(i); endendif ~isempty(clamped_cov) Sigma = clamped_cov; return;endif ~tied_cov Sigma = zeros(Ysz,Ysz,Q); for i=1:Q if cov_type(1) == 's' % eqn 17 s2 = (1/Ysz)*( (YTY(i)/w(i)) - mu(:,i)'*mu(:,i) ); Sigma(:,:,i) = s2 * eye(Ysz); else % eqn 12 SS = YY(:,:,i)/w(i) - mu(:,i)*mu(:,i)'; if cov_type(1)=='d' SS = diag(diag(SS)); end Sigma(:,:,i) = SS; end endelse % tied cov if cov_type(1) == 's' % eqn 19 s2 = (1/(N*Ysz))*(sum(YTY,2) + sum(diag(mu'*mu) .* w)); Sigma = s2*eye(Ysz); else SS = zeros(Ysz, Ysz); % eqn 15 for i=1:Q % probably could vectorize this... SS = SS + YY(:,:,i)/N - mu(:,i)*mu(:,i)'; end if cov_type(1) == 'd' Sigma = diag(diag(SS)); else Sigma = SS; end endendif tied_cov Sigma = repmat(Sigma, [1 1 Q]);endSigma = Sigma + cov_prior;
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -