?? usbf_idma.v
字號:
`include "usbf_defines.v"module usbf_idma( clk, rst, // Packet Disassembler/Assembler interface rx_data_st, rx_data_valid, rx_data_done, send_data, tx_data_st, rd_next, // Protocol Engine rx_dma_en, tx_dma_en, abort, idma_done, buf_size, dma_en, send_zero_length, // Register File Manager Interface adr, size, sizu_c, // Memory Arb interface madr, mdout, mdin, mwe, mreq, mack );parameter SSRAM_HADR = 14;// Packet Disassembler/Assembler interfaceinput clk, rst;input [7:0] rx_data_st;input rx_data_valid;input rx_data_done;output send_data;output [7:0] tx_data_st;input rd_next;// Protocol Engineinput rx_dma_en; // Allows the data to be storedinput tx_dma_en; // Allows for data to be retrievedinput abort; // Abort Transfer (time_out, crc_err or rx_error)output idma_done; // DMA is doneinput [13:0] buf_size; // Actual buffer sizeinput dma_en; // External DMA enabledinput send_zero_length;// Register File Manager Interfaceinput [SSRAM_HADR + 2:0] adr; // Byte Addressinput [13:0] size; // Size in bytesoutput [10:0] sizu_c; // Up and Down counting size registers, used to update// Memory Arb interfaceoutput [SSRAM_HADR:0] madr; // word addressoutput [31:0] mdout;input [31:0] mdin;output mwe;output mreq;input mack;/////////////////////////////////////////////////////////////////////// Local Wires and Registers//parameter [7:0] // synopsys enum state IDLE = 8'b00000001, WAIT_MRD = 8'b00000010, MEM_WR = 8'b00000100, MEM_WR1 = 8'b00001000, MEM_WR2 = 8'b00010000, MEM_RD1 = 8'b00100000, MEM_RD2 = 8'b01000000, MEM_RD3 = 8'b10000000;reg [7:0] /* synopsys enum state */ state, next_state;// synopsys state_vector statereg tx_dma_en_r, rx_dma_en_r;reg [SSRAM_HADR:0] adr_cw; // Internal word address counterreg [2:0] adr_cb; // Internal byte address counterreg [SSRAM_HADR:0] adrw_next; // next addressreg [SSRAM_HADR:0] adrw_next1; // next address (after overrun check)reg [SSRAM_HADR:0] last_buf_adr; // Last Buffer Addressreg [2:0] adrb_next; // next byte addressreg [13:0] sizd_c; // Internal size counterreg [10:0] sizu_c; // Internal size counterwire adr_incw;wire adr_incb;wire siz_dec;wire siz_inc;reg word_done; // Indicates that a word has been // assembledreg mreq_d; // Memory request from State Machinereg [31:0] dtmp_r; // Temp data assembly registerreg [31:0] dout_r; // Data output registerreg mwe_d; // Memory Write enablereg dtmp_sel; // Selects tmp data register for pre-fetchreg sizd_is_zero; // Indicates when all bytes have been // transferredwire sizd_is_zero_d;reg [7:0] tx_data_st; // Data output to packet assemblerreg [31:0] rd_buf0, rd_buf1; // Mem Rd. buffers for TXreg rd_first; // Indicates initial fill of buffersreg idma_done; // DMA transfer is donereg mack_r;wire send_data; // Enable UTMI Transmitterreg send_data_r;reg word_done_r;reg wr_last;reg wr_last_en;reg wr_done;reg wr_done_r;reg dtmp_sel_r;reg mwe;reg rx_data_done_r2;wire fill_buf0, fill_buf1;wire adrb_is_3;reg rx_data_done_r;reg rx_data_valid_r;reg [7:0] rx_data_st_r;reg send_zero_length_r;/////////////////////////////////////////////////////////////////////// Memory Arb interface//// Memory Requestassign mreq = (mreq_d & !mack_r) | word_done_r;// Output Dataassign mdout = dout_r;// Memory Addressassign madr = adr_cw;always @(posedge clk) mwe <= mwe_d;always @(posedge clk) mack_r <= mreq & mack;/////////////////////////////////////////////////////////////////////// Misc Logic//always @(posedge clk) rx_data_valid_r <= rx_data_valid;always @(posedge clk) rx_data_st_r <= rx_data_st;always @(posedge clk) rx_data_done_r <= rx_data_done;always @(posedge clk) rx_data_done_r2 <= rx_data_done_r;// Generate one cycle pulses for tx and rx dma enablealways @(posedge clk) tx_dma_en_r <= tx_dma_en;always @(posedge clk) rx_dma_en_r <= rx_dma_en;always @(posedge clk) send_zero_length_r <= send_zero_length;// address counteralways @(posedge clk) if(rx_dma_en_r || tx_dma_en_r) adr_cw <= adr[SSRAM_HADR + 2:2]; else adr_cw <= adrw_next1;always @(posedge clk) last_buf_adr <= adr + { {SSRAM_HADR+2-13{1'b0}}, buf_size };always @(dma_en or adrw_next or last_buf_adr) if(adrw_next == last_buf_adr && dma_en) adrw_next1 = {SSRAM_HADR+1{1'b0}}; else adrw_next1 = adrw_next;always @(adr_incw or adr_cw) if(adr_incw) adrw_next = adr_cw + {{SSRAM_HADR{1'b0}}, 1'b1}; else adrw_next = adr_cw;`ifdef USBF_ASYNC_RESETalways @(posedge clk or negedge rst)`elsealways @(posedge clk)`endif if(!rst) adr_cb <= 3'h0; else if(rx_dma_en_r || tx_dma_en_r) adr_cb <= adr[2:0]; else adr_cb <= adrb_next;always @(adr_incb or adr_cb) if(adr_incb) adrb_next = adr_cb + 3'h1; else adrb_next = adr_cb;assign adr_incb = rx_data_valid_r | rd_next;assign adr_incw = !dtmp_sel_r & mack_r;// Size Counter (counting backward from input size)`ifdef USBF_ASYNC_RESETalways @(posedge clk or negedge rst)`elsealways @(posedge clk)`endif if(!rst) sizd_c <= 14'h3fff; else if(tx_dma_en || tx_dma_en_r) sizd_c <= size; else if(siz_dec) sizd_c <= sizd_c - 14'h1;assign siz_dec = (rd_first & mack_r) | (rd_next & (sizd_c != 14'h0));assign sizd_is_zero_d = sizd_c == 14'h0;always @(posedge clk) sizd_is_zero <= sizd_is_zero_d;// Size Counter (counting up from zero)`ifdef USBF_ASYNC_RESETalways @(posedge clk or negedge rst)`elsealways @(posedge clk)`endif if(!rst) sizu_c <= 11'h0; else // Do I need to add "abort" in the next line ??? if(rx_dma_en_r) sizu_c <= 11'h0; else if(siz_inc) sizu_c <= sizu_c + 11'h1;assign siz_inc = rx_data_valid_r;// DMA Done Indicatoralways @(posedge clk) idma_done <= (rx_data_done_r | sizd_is_zero_d); // & !tx_dma_en;/////////////////////////////////////////////////////////////////////// RX Logic//always @(posedge clk) dtmp_sel_r <= dtmp_sel;// Memory data inputalways @(posedge clk) if(dtmp_sel_r) dtmp_r <= mdin; else if(rx_data_valid_r) begin if(adr_cb[1:0] == 2'h0) dtmp_r[07:00] <= rx_data_st_r; if(adr_cb[1:0] == 2'h1) dtmp_r[15:08] <= rx_data_st_r; if(adr_cb[1:0] == 2'h2) dtmp_r[23:16] <= rx_data_st_r; if(adr_cb[1:0] == 2'h3) dtmp_r[31:24] <= rx_data_st_r; endalways @(posedge clk) word_done <= ((adr_cb[1:0] == 2'h3) & rx_data_valid_r) | wr_last;always @(posedge clk) word_done_r <= word_done & !word_done_r;// Store output data and address when we got a wordalways @(posedge clk) if(word_done) dout_r <= dtmp_r;always @(posedge clk) wr_last <= (adr_cb[1:0] != 2'h0) & !rx_data_valid_r & wr_last_en;always @(posedge clk) wr_done_r <= rx_data_done_r;always @(posedge clk) wr_done <= wr_done_r;/////////////////////////////////////////////////////////////////////// TX Logic//// Fill TX Buffersalways @(posedge clk) if(fill_buf0) rd_buf0 <= mdin;always @(posedge clk) if(fill_buf1) rd_buf1 <= mdin;always @(adrb_next or rd_buf0 or rd_buf1) case(adrb_next[2:0]) // synopsys full_case parallel_case 3'h0: tx_data_st = rd_buf0[07:00]; 3'h1: tx_data_st = rd_buf0[15:08]; 3'h2: tx_data_st = rd_buf0[23:16]; 3'h3: tx_data_st = rd_buf0[31:24]; 3'h4: tx_data_st = rd_buf1[07:00]; 3'h5: tx_data_st = rd_buf1[15:08]; 3'h6: tx_data_st = rd_buf1[23:16]; 3'h7: tx_data_st = rd_buf1[31:24]; endcaseassign fill_buf0 = !adr_cw[0] & mack_r;assign fill_buf1 = adr_cw[0] & mack_r;assign adrb_is_3 = adr_cb[1:0] == 2'h3;`ifdef USBF_ASYNC_RESETalways @(posedge clk or negedge rst)`elsealways @(posedge clk)`endif if(!rst) send_data_r <= 1'b0; else if(rd_first) send_data_r <= 1'b1; else if(((sizd_c==14'h1) && rd_next) || sizd_is_zero_d) send_data_r <= 1'b0;assign send_data = send_data_r | send_zero_length_r;/////////////////////////////////////////////////////////////////////// IDMA Load/Store State Machine//// store incoming data to memory until rx_data done// First pre-fetch data from memory, so that bytes can be stuffed properly`ifdef USBF_ASYNC_RESETalways @(posedge clk or negedge rst)`elsealways @(posedge clk)`endif if(!rst) state <= IDLE; else state <= next_state;always @(state or mack_r or abort or rx_dma_en_r or tx_dma_en_r or sizd_is_zero or wr_last or wr_done or rx_data_done_r2 or rd_next or adrb_is_3 or send_zero_length_r) begin next_state = state; // Default do not change state mreq_d = 1'b0; mwe_d = 1'b0; rd_first = 1'b0; dtmp_sel = 1'b0; wr_last_en = 1'b0; case(state) // synopsys full_case parallel_case IDLE: begin// synopsys translate_off`ifdef USBF_VERBOSE_DEBUG$display("IDMA: Entered IDLE state (%t)", $time);`endif`ifdef USBF_DEBUGif(rst)beginif(rx_dma_en_r === 1'bx) $display("ERROR: IDMA: IDLE: rx_dma_en_r is unknown. (%t)", $time);if(tx_dma_en_r === 1'bx) $display("ERROR: IDMA: IDLE: tx_dma_en_r is unknown. (%t)", $time);if(abort === 1'bx) $display("ERROR: IDMA: IDLE: abort is unknown. (%t)", $time);end`endif// synopsys translate_on if(rx_dma_en_r && !abort) begin next_state = WAIT_MRD; end if(tx_dma_en_r && !abort && !send_zero_length_r) begin next_state = MEM_RD1; end end WAIT_MRD: // Pre-fetch a word from memory begin// synopsys translate_off`ifdef USBF_VERBOSE_DEBUG$display("IDMA: Entered WAIT_MRD state (%t)", $time);`endif`ifdef USBF_DEBUGif(abort === 1'bx) $display("ERROR: IDMA: WAIT_MRD: abort is unknown. (%t)", $time);if(mack_r === 1'bx) $display("ERROR: IDMA: WAIT_MRD: mack_r is unknown. (%t)", $time);`endif// synopsys translate_on if(abort) next_state = IDLE; else if(mack_r) next_state = MEM_WR; else begin dtmp_sel = 1'b1; mreq_d = 1'b1; end end MEM_WR: begin// synopsys translate_off`ifdef USBF_VERBOSE_DEBUG$display("IDMA: Entered MEM_WR state (%t)", $time);`endif`ifdef USBF_DEBUGif(abort === 1'bx) $display("ERROR: IDMA: MEM_WR: abort is unknown. (%t)", $time);if(rx_data_done_r2 === 1'bx) $display("ERROR: IDMA: MEM_WR: rx_data_done_r2 is unknown. (%t)", $time);`endif// synopsys translate_on mwe_d = 1'b1; if(abort) next_state = IDLE; else if(rx_data_done_r2) begin wr_last_en = 1'b1; next_state = MEM_WR1; end end MEM_WR1: begin// synopsys translate_off`ifdef USBF_VERBOSE_DEBUG$display("IDMA: Entered MEM_WR1 state (%t)", $time);`endif`ifdef USBF_DEBUGif(abort === 1'bx) $display("ERROR: IDMA: MEM_WR1: abort is unknown. (%t)", $time);if(wr_last === 1'bx) $display("ERROR: IDMA: MEM_WR1: wr_last is unknown. (%t)", $time);if(wr_done === 1'bx) $display("ERROR: IDMA: MEM_WR1: wr_done is unknown. (%t)", $time);`endif// synopsys translate_on mwe_d = 1'b1; wr_last_en = 1'b1; if(abort) next_state = IDLE; else if(wr_last) next_state = MEM_WR2; else if(wr_done) next_state = IDLE; end MEM_WR2: begin// synopsys translate_off`ifdef USBF_VERBOSE_DEBUG$display("IDMA: Entered MEM_WR2 state (%t)", $time);`endif`ifdef USBF_DEBUGif(mack_r === 1'bx) $display("ERROR: IDMA: MEM_WR2: mack_r is unknown. (%t)", $time);`endif// synopsys translate_on mwe_d = 1'b1; if(mack_r) next_state = IDLE; end MEM_RD1: begin// synopsys translate_off`ifdef USBF_VERBOSE_DEBUG$display("IDMA: Entered MEM_RD1 state (%t)", $time);`endif`ifdef USBF_DEBUGif(abort === 1'bx) $display("ERROR: IDMA: MEM_RD1: abort is unknown. (%t)", $time);if(mack_r === 1'bx) $display("ERROR: IDMA: MEM_RD1: mack_r is unknown. (%t)", $time);`endif// synopsys translate_on mreq_d = 1'b1; if(mack_r) rd_first = 1'b1; if(abort) next_state = IDLE; else if(mack_r) next_state = MEM_RD2; end MEM_RD2: begin// synopsys translate_off`ifdef USBF_VERBOSE_DEBUG$display("IDMA: Entered MEM_RD2 state (%t)", $time);`endif`ifdef USBF_DEBUGif(abort === 1'bx) $display("ERROR: IDMA: MEM_RD2: abort is unknown. (%t)", $time);if(mack_r === 1'bx) $display("ERROR: IDMA: MEM_RD2: mack_r is unknown. (%t)", $time);`endif// synopsys translate_on mreq_d = 1'b1; if(abort) next_state = IDLE; else if(mack_r) next_state = MEM_RD3; end MEM_RD3: begin// synopsys translate_off`ifdef USBF_VERBOSE_DEBUG$display("IDMA: Entered MEM_RD3 state (%t)", $time);`endif`ifdef USBF_DEBUGif(abort === 1'bx) $display("ERROR: IDMA: MEM_RD3: abort is unknown. (%t)", $time);if(sizd_is_zero===1'bx) $display("ERROR: IDMA: MEM_RD3: sizd_is_zero is unknown. (%t)", $time);if(adrb_is_3 === 1'bx) $display("ERROR: IDMA: MEM_RD3: adrb_is_3 is unknown. (%t)", $time);if(rd_next === 1'bx) $display("ERROR: IDMA: MEM_RD3: rd_next is unknown. (%t)", $time);`endif// synopsys translate_on if(sizd_is_zero || abort) next_state = IDLE; else if(adrb_is_3 && rd_next) next_state = MEM_RD2; end endcase endendmodule
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -