?? pbuf.c
字號(hào):
/**
* @file
* Packet buffer management
*
* Packets are built from the pbuf data structure. It supports dynamic
* memory allocation for packet contents or can reference externally
* managed packet contents both in RAM and ROM. Quick allocation for
* incoming packets is provided through pools with fixed sized pbufs.
*
* A packet may span over multiple pbufs, chained as a singly linked
* list. This is called a "pbuf chain".
*
* Multiple packets may be queued, also using this singly linked list.
* This is called a "packet queue".
*
* So, a packet queue consists of one or more pbuf chains, each of
* which consist of one or more pbufs. Currently, queues are only
* supported in a limited section of lwIP, this is the etharp queueing
* code. Outside of this section no packet queues are supported yet.
*
* The differences between a pbuf chain and a packet queue are very
* precise but subtle.
*
* The last pbuf of a packet has a ->tot_len field that equals the
* ->len field. It can be found by traversing the list. If the last
* pbuf of a packet has a ->next field other than NULL, more packets
* are on the queue.
*
* Therefore, looping through a pbuf of a single packet, has an
* loop end condition (tot_len == p->len), NOT (next == NULL).
*/
/*
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*/
#include "lwip/opt.h"
#include "lwip/stats.h"
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/memp.h"
#include "lwip/pbuf.h"
#include "lwip/sys.h"
#include "arch/perf.h"
#include <string.h>
static u8_t pbuf_pool_memory[(PBUF_POOL_SIZE * MEM_ALIGN_SIZE(PBUF_POOL_BUFSIZE + sizeof(struct pbuf)))];
#if !SYS_LIGHTWEIGHT_PROT
static volatile u8_t pbuf_pool_free_lock, pbuf_pool_alloc_lock;
static sys_sem_t pbuf_pool_free_sem;
#endif
static struct pbuf *pbuf_pool = NULL;
/**
* Initializes the pbuf module.
*
* A large part of memory is allocated for holding the pool of pbufs.
* The size of the individual pbufs in the pool is given by the size
* parameter, and the number of pbufs in the pool by the num parameter.
*
* After the memory has been allocated, the pbufs are set up. The
* ->next pointer in each pbuf is set up to point to the next pbuf in
* the pool.
*
*/
void
pbuf_init(void)
{
struct pbuf *p, *q = NULL;
u16_t i;
pbuf_pool = (struct pbuf *)&pbuf_pool_memory[0];
LWIP_ASSERT("pbuf_init: pool aligned", (mem_ptr_t)pbuf_pool % MEM_ALIGNMENT == 0);
#if PBUF_STATS
lwip_stats.pbuf.avail = PBUF_POOL_SIZE;
#endif /* PBUF_STATS */
/* Set up ->next pointers to link the pbufs of the pool together */
p = pbuf_pool;
for(i = 0; i < PBUF_POOL_SIZE; ++i) {
p->next = (struct pbuf *)((u8_t *)p + PBUF_POOL_BUFSIZE + sizeof(struct pbuf));
p->len = p->tot_len = PBUF_POOL_BUFSIZE;
p->payload = MEM_ALIGN((void *)((u8_t *)p + sizeof(struct pbuf)));
p->flags = PBUF_FLAG_POOL;
q = p;
p = p->next;
}
/* The ->next pointer of last pbuf is NULL to indicate that there
are no more pbufs in the pool */
q->next = NULL;
#if !SYS_LIGHTWEIGHT_PROT
pbuf_pool_alloc_lock = 0;
pbuf_pool_free_lock = 0;
pbuf_pool_free_sem = sys_sem_new(1);
#endif
}
/**
* @internal only called from pbuf_alloc()
*/
static struct pbuf *
pbuf_pool_alloc(void)
{
struct pbuf *p = NULL;
SYS_ARCH_DECL_PROTECT(old_level);
SYS_ARCH_PROTECT(old_level);
#if !SYS_LIGHTWEIGHT_PROT
/* Next, check the actual pbuf pool, but if the pool is locked, we
pretend to be out of buffers and return NULL. */
if (pbuf_pool_free_lock) {
#if PBUF_STATS
++lwip_stats.pbuf.alloc_locked;
#endif /* PBUF_STATS */
return NULL;
}
pbuf_pool_alloc_lock = 1;
if (!pbuf_pool_free_lock) {
#endif /* SYS_LIGHTWEIGHT_PROT */
p = pbuf_pool;
if (p) {
pbuf_pool = p->next;
}
#if !SYS_LIGHTWEIGHT_PROT
#if PBUF_STATS
} else {
++lwip_stats.pbuf.alloc_locked;
#endif /* PBUF_STATS */
}
pbuf_pool_alloc_lock = 0;
#endif /* SYS_LIGHTWEIGHT_PROT */
#if PBUF_STATS
if (p != NULL) {
++lwip_stats.pbuf.used;
if (lwip_stats.pbuf.used > lwip_stats.pbuf.max) {
lwip_stats.pbuf.max = lwip_stats.pbuf.used;
}
}
#endif /* PBUF_STATS */
SYS_ARCH_UNPROTECT(old_level);
return p;
}
/**
* Allocates a pbuf of the given type (possibly a chain for PBUF_POOL type).
*
* The actual memory allocated for the pbuf is determined by the
* layer at which the pbuf is allocated and the requested size
* (from the size parameter).
*
* @param flag this parameter decides how and where the pbuf
* should be allocated as follows:
*
* - PBUF_RAM: buffer memory for pbuf is allocated as one large
* chunk. This includes protocol headers as well.
* - PBUF_ROM: no buffer memory is allocated for the pbuf, even for
* protocol headers. Additional headers must be prepended
* by allocating another pbuf and chain in to the front of
* the ROM pbuf. It is assumed that the memory used is really
* similar to ROM in that it is immutable and will not be
* changed. Memory which is dynamic should generally not
* be attached to PBUF_ROM pbufs. Use PBUF_REF instead.
* - PBUF_REF: no buffer memory is allocated for the pbuf, even for
* protocol headers. It is assumed that the pbuf is only
* being used in a single thread. If the pbuf gets queued,
* then pbuf_take should be called to copy the buffer.
* - PBUF_POOL: the pbuf is allocated as a pbuf chain, with pbufs from
* the pbuf pool that is allocated during pbuf_init().
*
* @return the allocated pbuf. If multiple pbufs where allocated, this
* is the first pbuf of a pbuf chain.
*/
struct pbuf *
pbuf_alloc(pbuf_layer l, u16_t length, pbuf_flag flag)
{
struct pbuf *p, *q, *r;
u16_t offset;
s32_t rem_len; /* remaining length */
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE | 3, ("pbuf_alloc(length=%u)\n", length));
/* determine header offset */
offset = 0;
switch (l) {
case PBUF_TRANSPORT:
/* add room for transport (often TCP) layer header */
offset += PBUF_TRANSPORT_HLEN;
/* FALLTHROUGH */
case PBUF_IP:
/* add room for IP layer header */
offset += PBUF_IP_HLEN;
/* FALLTHROUGH */
case PBUF_LINK:
/* add room for link layer header */
offset += PBUF_LINK_HLEN;
break;
case PBUF_RAW:
break;
default:
LWIP_ASSERT("pbuf_alloc: bad pbuf layer", 0);
return NULL;
}
switch (flag) {
case PBUF_POOL:
/* allocate head of pbuf chain into p */
p = pbuf_pool_alloc();
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE | 3, ("pbuf_alloc: allocated pbuf %p\n", (void *)p));
if (p == NULL) {
#if PBUF_STATS
++lwip_stats.pbuf.err;
#endif /* PBUF_STATS */
return NULL;
}
p->next = NULL;
/* make the payload pointer point 'offset' bytes into pbuf data memory */
p->payload = MEM_ALIGN((void *)((u8_t *)p + (sizeof(struct pbuf) + offset)));
LWIP_ASSERT("pbuf_alloc: pbuf p->payload properly aligned",
((mem_ptr_t)p->payload % MEM_ALIGNMENT) == 0);
/* the total length of the pbuf chain is the requested size */
p->tot_len = length;
/* set the length of the first pbuf in the chain */
p->len = length > PBUF_POOL_BUFSIZE - offset? PBUF_POOL_BUFSIZE - offset: length;
/* set reference count (needed here in case we fail) */
p->ref = 1;
/* now allocate the tail of the pbuf chain */
/* remember first pbuf for linkage in next iteration */
r = p;
/* remaining length to be allocated */
rem_len = length - p->len;
/* any remaining pbufs to be allocated? */
while (rem_len > 0) {
q = pbuf_pool_alloc();
if (q == NULL) {
LWIP_DEBUGF(PBUF_DEBUG | 2, ("pbuf_alloc: Out of pbufs in pool.\n"));
#if PBUF_STATS
++lwip_stats.pbuf.err;
#endif /* PBUF_STATS */
/* free chain so far allocated */
pbuf_free(p);
/* bail out unsuccesfully */
return NULL;
}
q->next = NULL;
/* make previous pbuf point to this pbuf */
r->next = q;
/* set total length of this pbuf and next in chain */
q->tot_len = rem_len;
/* this pbuf length is pool size, unless smaller sized tail */
q->len = rem_len > PBUF_POOL_BUFSIZE? PBUF_POOL_BUFSIZE: rem_len;
q->payload = (void *)((u8_t *)q + sizeof(struct pbuf));
LWIP_ASSERT("pbuf_alloc: pbuf q->payload properly aligned",
((mem_ptr_t)q->payload % MEM_ALIGNMENT) == 0);
q->ref = 1;
/* calculate remaining length to be allocated */
rem_len -= q->len;
/* remember this pbuf for linkage in next iteration */
r = q;
}
/* end of chain */
/*r->next = NULL;*/
break;
case PBUF_RAM:
/* If pbuf is to be allocated in RAM, allocate memory for it. */
p = mem_malloc(MEM_ALIGN_SIZE(sizeof(struct pbuf) + offset) + MEM_ALIGN_SIZE(length));
if (p == NULL) {
return NULL;
}
/* Set up internal structure of the pbuf. */
p->payload = MEM_ALIGN((void *)((u8_t *)p + sizeof(struct pbuf) + offset));
p->len = p->tot_len = length;
p->next = NULL;
p->flags = PBUF_FLAG_RAM;
LWIP_ASSERT("pbuf_alloc: pbuf->payload properly aligned",
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -