?? pbuf.c
字號(hào):
pbuf_ref(struct pbuf *p)
{
SYS_ARCH_DECL_PROTECT(old_level);
/* pbuf given? */
if (p != NULL) {
SYS_ARCH_PROTECT(old_level);
++(p->ref);
SYS_ARCH_UNPROTECT(old_level);
}
}
/**
* Concatenate two pbufs (each may be a pbuf chain) and take over
* the caller's reference of the tail pbuf.
*
* @note The caller MAY NOT reference the tail pbuf afterwards.
* Use pbuf_chain() for that purpose.
*
* @see pbuf_chain()
*/
void
pbuf_cat(struct pbuf *h, struct pbuf *t)
{
struct pbuf *p;
LWIP_ASSERT("h != NULL (programmer violates API)", h != NULL);
LWIP_ASSERT("t != NULL (programmer violates API)", t != NULL);
if ((h == NULL) || (t == NULL)) return;
/* proceed to last pbuf of chain */
for (p = h; p->next != NULL; p = p->next) {
/* add total length of second chain to all totals of first chain */
p->tot_len += t->tot_len;
}
/* { p is last pbuf of first h chain, p->next == NULL } */
LWIP_ASSERT("p->tot_len == p->len (of last pbuf in chain)", p->tot_len == p->len);
LWIP_ASSERT("p->next == NULL", p->next == NULL);
/* add total length of second chain to last pbuf total of first chain */
p->tot_len += t->tot_len;
/* chain last pbuf of head (p) with first of tail (t) */
p->next = t;
/* p->next now references t, but the caller will drop its reference to t,
* so netto there is no change to the reference count of t.
*/
}
/**
* Chain two pbufs (or pbuf chains) together.
*
* The caller MUST call pbuf_free(t) once it has stopped
* using it. Use pbuf_cat() instead if you no longer use t.
*
* @param h head pbuf (chain)
* @param t tail pbuf (chain)
* @note The pbufs MUST belong to the same packet.
* @note MAY NOT be called on a packet queue.
*
* The ->tot_len fields of all pbufs of the head chain are adjusted.
* The ->next field of the last pbuf of the head chain is adjusted.
* The ->ref field of the first pbuf of the tail chain is adjusted.
*
*/
void
pbuf_chain(struct pbuf *h, struct pbuf *t)
{
pbuf_cat(h, t);
/* t is now referenced by h */
pbuf_ref(t);
LWIP_DEBUGF(PBUF_DEBUG | DBG_FRESH | 2, ("pbuf_chain: %p references %p\n", (void *)h, (void *)t));
}
/* For packet queueing. Note that queued packets MUST be dequeued first
* using pbuf_dequeue() before calling other pbuf_() functions. */
#if ARP_QUEUEING
/**
* Add a packet to the end of a queue.
*
* @param q pointer to first packet on the queue
* @param n packet to be queued
*
* Both packets MUST be given, and must be different.
*/
void
pbuf_queue(struct pbuf *p, struct pbuf *n)
{
#if PBUF_DEBUG /* remember head of queue */
struct pbuf *q = p;
#endif
/* programmer stupidity checks */
LWIP_ASSERT("p == NULL in pbuf_queue: this indicates a programmer error\n", p != NULL);
LWIP_ASSERT("n == NULL in pbuf_queue: this indicates a programmer error\n", n != NULL);
LWIP_ASSERT("p == n in pbuf_queue: this indicates a programmer error\n", p != n);
if ((p == NULL) || (n == NULL) || (p == n)){
LWIP_DEBUGF(PBUF_DEBUG | DBG_HALT | 3, ("pbuf_queue: programmer argument error\n"))
return;
}
/* iterate through all packets on queue */
while (p->next != NULL) {
/* be very picky about pbuf chain correctness */
#if PBUF_DEBUG
/* iterate through all pbufs in packet */
while (p->tot_len != p->len) {
/* make sure invariant condition holds */
LWIP_ASSERT("p->len < p->tot_len", p->len < p->tot_len);
/* make sure each packet is complete */
LWIP_ASSERT("p->next != NULL", p->next != NULL);
p = p->next;
/* { p->tot_len == p->len => p is last pbuf of a packet } */
}
/* { p is last pbuf of a packet } */
/* proceed to next packet on queue */
#endif
/* proceed to next pbuf */
if (p->next != NULL) p = p->next;
}
/* { p->tot_len == p->len and p->next == NULL } ==>
* { p is last pbuf of last packet on queue } */
/* chain last pbuf of queue with n */
p->next = n;
/* n is now referenced to by the (packet p in the) queue */
pbuf_ref(n);
#if PBUF_DEBUG
LWIP_DEBUGF(PBUF_DEBUG | DBG_FRESH | 2,
("pbuf_queue: newly queued packet %p sits after packet %p in queue %p\n",
(void *)n, (void *)p, (void *)q));
#endif
}
/**
* Remove a packet from the head of a queue.
*
* The caller MUST reference the remainder of the queue (as returned). The
* caller MUST NOT call pbuf_ref() as it implicitly takes over the reference
* from p.
*
* @param p pointer to first packet on the queue which will be dequeued.
* @return first packet on the remaining queue (NULL if no further packets).
*
*/
struct pbuf *
pbuf_dequeue(struct pbuf *p)
{
struct pbuf *q;
LWIP_ASSERT("p != NULL", p != NULL);
/* iterate through all pbufs in packet p */
while (p->tot_len != p->len) {
/* make sure invariant condition holds */
LWIP_ASSERT("p->len < p->tot_len", p->len < p->tot_len);
/* make sure each packet is complete */
LWIP_ASSERT("p->next != NULL", p->next != NULL);
p = p->next;
}
/* { p->tot_len == p->len } => p is the last pbuf of the first packet */
/* remember next packet on queue in q */
q = p->next;
/* dequeue packet p from queue */
p->next = NULL;
/* any next packet on queue? */
if (q != NULL) {
/* although q is no longer referenced by p, it MUST be referenced by
* the caller, who is maintaining this packet queue. So, we do not call
* pbuf_free(q) here, resulting in an implicit pbuf_ref(q) for the caller. */
LWIP_DEBUGF(PBUF_DEBUG | DBG_FRESH | 2, ("pbuf_dequeue: first remaining packet on queue is %p\n", (void *)q));
} else {
LWIP_DEBUGF(PBUF_DEBUG | DBG_FRESH | 2, ("pbuf_dequeue: no further packets on queue\n"));
}
return q;
}
#endif
/**
*
* Create PBUF_POOL (or PBUF_RAM) copies of PBUF_REF pbufs.
*
* Used to queue packets on behalf of the lwIP stack, such as
* ARP based queueing.
*
* Go through a pbuf chain and replace any PBUF_REF buffers
* with PBUF_POOL (or PBUF_RAM) pbufs, each taking a copy of
* the referenced data.
*
* @note You MUST explicitly use p = pbuf_take(p);
* The pbuf you give as argument, may have been replaced
* by a (differently located) copy through pbuf_take()!
*
* @note Any replaced pbufs will be freed through pbuf_free().
* This may deallocate them if they become no longer referenced.
*
* @param p Head of pbuf chain to process
*
* @return Pointer to head of pbuf chain
*/
struct pbuf *
pbuf_take(struct pbuf *p)
{
struct pbuf *q , *prev, *head;
LWIP_ASSERT("pbuf_take: p != NULL\n", p != NULL);
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE | 3, ("pbuf_take(%p)\n", (void*)p));
prev = NULL;
head = p;
/* iterate through pbuf chain */
do
{
/* pbuf is of type PBUF_REF? */
if (p->flags == PBUF_FLAG_REF) {
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE, ("pbuf_take: encountered PBUF_REF %p\n", (void *)p));
/* allocate a pbuf (w/ payload) fully in RAM */
/* PBUF_POOL buffers are faster if we can use them */
if (p->len <= PBUF_POOL_BUFSIZE) {
q = pbuf_alloc(PBUF_RAW, p->len, PBUF_POOL);
if (q == NULL) {
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE | 2, ("pbuf_take: Could not allocate PBUF_POOL\n"));
}
} else {
/* no replacement pbuf yet */
q = NULL;
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE | 2, ("pbuf_take: PBUF_POOL too small to replace PBUF_REF\n"));
}
/* no (large enough) PBUF_POOL was available? retry with PBUF_RAM */
if (q == NULL) {
q = pbuf_alloc(PBUF_RAW, p->len, PBUF_RAM);
if (q == NULL) {
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE | 2, ("pbuf_take: Could not allocate PBUF_RAM\n"));
}
}
/* replacement pbuf could be allocated? */
if (q != NULL)
{
/* copy p to q */
/* copy successor */
q->next = p->next;
/* remove linkage from original pbuf */
p->next = NULL;
/* remove linkage to original pbuf */
if (prev != NULL) {
/* prev->next == p at this point */
LWIP_ASSERT("prev->next == p", prev->next == p);
/* break chain and insert new pbuf instead */
prev->next = q;
/* prev == NULL, so we replaced the head pbuf of the chain */
} else {
head = q;
}
/* copy pbuf payload */
memcpy(q->payload, p->payload, p->len);
q->tot_len = p->tot_len;
q->len = p->len;
/* in case p was the first pbuf, it is no longer refered to by
* our caller, as the caller MUST do p = pbuf_take(p);
* in case p was not the first pbuf, it is no longer refered to
* by prev. we can safely free the pbuf here.
* (note that we have set p->next to NULL already so that
* we will not free the rest of the chain by accident.)
*/
pbuf_free(p);
/* do not copy ref, since someone else might be using the old buffer */
LWIP_DEBUGF(PBUF_DEBUG, ("pbuf_take: replaced PBUF_REF %p with %p\n", (void *)p, (void *)q));
p = q;
} else {
/* deallocate chain */
pbuf_free(head);
LWIP_DEBUGF(PBUF_DEBUG | 2, ("pbuf_take: failed to allocate replacement pbuf for %p\n", (void *)p));
return NULL;
}
/* p->flags != PBUF_FLAG_REF */
} else {
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE | 1, ("pbuf_take: skipping pbuf not of type PBUF_REF\n"));
}
/* remember this pbuf */
prev = p;
/* proceed to next pbuf in original chain */
p = p->next;
} while (p);
LWIP_DEBUGF(PBUF_DEBUG | DBG_TRACE | 1, ("pbuf_take: end of chain reached.\n"));
return head;
}
/**
* Dechains the first pbuf from its succeeding pbufs in the chain.
*
* Makes p->tot_len field equal to p->len.
* @param p pbuf to dechain
* @return remainder of the pbuf chain, or NULL if it was de-allocated.
* @note May not be called on a packet queue.
*/
struct pbuf *
pbuf_dechain(struct pbuf *p)
{
struct pbuf *q;
u8_t tail_gone = 1;
/* tail */
q = p->next;
/* pbuf has successor in chain? */
if (q != NULL) {
/* assert tot_len invariant: (p->tot_len == p->len + (p->next? p->next->tot_len: 0) */
LWIP_ASSERT("p->tot_len == p->len + q->tot_len", q->tot_len == p->tot_len - p->len);
/* enforce invariant if assertion is disabled */
q->tot_len = p->tot_len - p->len;
/* decouple pbuf from remainder */
p->next = NULL;
/* total length of pbuf p is its own length only */
p->tot_len = p->len;
/* q is no longer referenced by p, free it */
LWIP_DEBUGF(PBUF_DEBUG | DBG_STATE, ("pbuf_dechain: unreferencing %p\n", (void *)q));
tail_gone = pbuf_free(q);
if (tail_gone > 0) {
LWIP_DEBUGF(PBUF_DEBUG | DBG_STATE,
("pbuf_dechain: deallocated %p (as it is no longer referenced)\n", (void *)q));
}
/* return remaining tail or NULL if deallocated */
}
/* assert tot_len invariant: (p->tot_len == p->len + (p->next? p->next->tot_len: 0) */
LWIP_ASSERT("p->tot_len == p->len", p->tot_len == p->len);
return (tail_gone > 0? NULL: q);
}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -