亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? specfunc-gamma.texi

?? 該文件為c++的數(shù)學(xué)函數(shù)庫!是一個(gè)非常有用的編程工具.它含有各種數(shù)學(xué)函數(shù),為科學(xué)計(jì)算、工程應(yīng)用等程序編寫提供方便!
?? TEXI
字號:
@cindex gamma functionThe Gamma function is defined by the following integral,@tex\beforedisplay$$\Gamma(x) = \int_0^{\infty} dt \, t^{x-1} \exp(-t)$$\afterdisplay@end tex@ifinfo@example\Gamma(x) = \int_0^\infty dt  t^@{x-1@} \exp(-t)@end example@end ifinfo@noindentFurther information on the Gamma function can be found in Abramowitz &Stegun, Chapter 6.  The  functions described in this section are declaredin the header file @file{gsl_sf_gamma.h}.@deftypefun double gsl_sf_gamma (double @var{x})@deftypefunx int gsl_sf_gamma_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the Gamma function @math{\Gamma(x)}, subject to xnot being a negative integer.  The function is computed using the realLanczos method. The maximum value of @math{x} such that @math{\Gamma(x)} is notconsidered an overflow is given by the macro @code{GSL_SF_GAMMA_XMAX}and is 171.0.@comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EROUND@end deftypefun@deftypefun double gsl_sf_lngamma (double @var{x})@deftypefunx int gsl_sf_lngamma_e (double @var{x}, gsl_sf_result * @var{result})@cindex logarithm of Gamma functionThese routines compute the logarithm of the Gamma function,@math{\log(\Gamma(x))}, subject to @math{x} not a being negativeinteger.  For @math{x<0} the real part of @math{\log(\Gamma(x))} isreturned, which is equivalent to @math{\log(|\Gamma(x)|)}.  The functionis computed using the real Lanczos method.@comment exceptions: GSL_EDOM, GSL_EROUND@end deftypefun@deftypefun int gsl_sf_lngamma_sgn_e (double @var{x}, gsl_sf_result * @var{result_lg}, double * @var{sgn})This routine computes the sign of the gamma function and the logarithmits magnitude, subject to @math{x} not being a negative integer.  Thefunction is computed using the real Lanczos method.  The value of thegamma function can be reconstructed using the relation @math{\Gamma(x) =sgn * \exp(resultlg)}.@comment exceptions: GSL_EDOM, GSL_EROUND@end deftypefun@deftypefun double gsl_sf_gammastar (double @var{x})@deftypefunx int gsl_sf_gammastar_e (double @var{x}, gsl_sf_result * @var{result})@cindex Regulated Gamma functionThese routines compute the regulated Gamma Function @math{\Gamma^*(x)}for @math{x > 0}. The regulated gamma function is given by,@tex\beforedisplay$$\eqalign{\Gamma^*(x) &= \Gamma(x)/(\sqrt{2\pi} x^{(x-1/2)} \exp(-x))\cr            &= \left(1 + {1 \over 12x} + ...\right) \quad\hbox{for~} x\to \infty\cr}$$\afterdisplay@end tex@ifinfo@example\Gamma^*(x) = \Gamma(x)/(\sqrt@{2\pi@} x^@{(x-1/2)@} \exp(-x))            = (1 + (1/12x) + ...)  for x \to \infty@end example@end ifinfoand is a useful suggestion of Temme.@comment exceptions: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_gammainv (double @var{x})@deftypefunx int gsl_sf_gammainv_e (double @var{x}, gsl_sf_result * @var{result})@cindex Reciprocal Gamma functionThese routines compute the reciprocal of the gamma function,@math{1/\Gamma(x)} using the real Lanczos method.@comment exceptions: GSL_EUNDRFLW, GSL_EROUND@end deftypefun@deftypefun int gsl_sf_lngamma_complex_e (double @var{zr}, double @var{zi}, gsl_sf_result * @var{lnr}, gsl_sf_result * @var{arg})@cindex Complex Gamma functionThis routine computes @math{\log(\Gamma(z))} for complex @math{z=z_r+iz_i} and @math{z} not a negative integer, using the complex Lanczosmethod.  The returned parameters are @math{lnr = \log|\Gamma(z)|} and@math{arg = \arg(\Gamma(z))} in @math{(-\pi,\pi]}.  Note that the phasepart (@var{arg}) is not well-determined when @math{|z|} is very large,due to inevitable roundoff in restricting to @math{(-\pi,\pi]}.  Thiswill result in a @code{GSL_ELOSS} error when it occurs.  The absolutevalue part (@var{lnr}), however, never suffers from loss of precision.@comment exceptions: GSL_EDOM, GSL_ELOSS@end deftypefun@deftypefun double gsl_sf_taylorcoeff (int @var{n}, double @var{x})@deftypefunx int gsl_sf_taylorcoeff_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})@cindex Taylor coefficients, computation ofThese routines compute the Taylor coefficient @math{x^n / n!} for @c{$x \ge 0$}@math{x >= 0}, @c{$n \ge 0$}@math{n >= 0}.@comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_fact (unsigned int @var{n})@deftypefunx int gsl_sf_fact_e (unsigned int @var{n}, gsl_sf_result * @var{result})@cindex factorialThese routines compute the factorial @math{n!}.  The factorial isrelated to the Gamma function by @math{n! = \Gamma(n+1)}.@comment exceptions: GSL_EDOM, GSL_OVRFLW@end deftypefun@deftypefun double gsl_sf_doublefact (unsigned int @var{n})@deftypefunx int gsl_sf_doublefact_e (unsigned int @var{n}, gsl_sf_result * @var{result})@cindex double factorialThese routines compute the double factorial @math{n!! = n(n-2)(n-4) \dots}. @comment exceptions: GSL_EDOM, GSL_OVRFLW@end deftypefun@deftypefun double gsl_sf_lnfact (unsigned int @var{n})@deftypefunx int gsl_sf_lnfact_e (unsigned int @var{n}, gsl_sf_result * @var{result})@cindex logarithm of factorialThese routines compute the logarithm of the factorial of @var{n},@math{\log(n!)}.  The algorithm is faster than computing@math{\ln(\Gamma(n+1))} via @code{gsl_sf_lngamma} for @math{n < 170},but defers for larger @var{n}.@comment exceptions: none@end deftypefun@deftypefun double gsl_sf_lndoublefact (unsigned int @var{n})@deftypefunx int gsl_sf_lndoublefact_e (unsigned int @var{n}, gsl_sf_result * @var{result})@cindex logarithm of double factorialThese routines compute the logarithm of the double factorial of @var{n},@math{\log(n!!)}.@comment exceptions: none@end deftypefun@deftypefun double gsl_sf_choose (unsigned int @var{n}, unsigned int @var{m})@deftypefunx int gsl_sf_choose_e (unsigned int @var{n}, unsigned int @var{m}, gsl_sf_result * @var{result})@cindex combinatorial factor C(m,n)These routines compute the combinatorial factor @code{n choose m}@math{= n!/(m!(n-m)!)}@comment exceptions: GSL_EDOM, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_lnchoose (unsigned int @var{n}, unsigned int @var{m})@deftypefunx int gsl_sf_lnchoose_e (unsigned int @var{n}, unsigned int @var{m}, gsl_sf_result * @var{result})@cindex logarithm of combinatorial factor C(m,n)These routines compute the logarithm of @code{n choose m}.  This isequivalent to the sum @math{\log(n!) - \log(m!) - \log((n-m)!)}.@comment exceptions: GSL_EDOM @end deftypefun@deftypefun double gsl_sf_poch (double @var{a}, double @var{x})@deftypefunx int gsl_sf_poch_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result})@cindex Pochhammer symbol@cindex Apell symbol, see Pochammer symbolThese routines compute the Pochhammer symbol @math{(a)_x := \Gamma(a +x)/\Gamma(a)}, subject to @math{a} and @math{a+x} not being negativeintegers. The Pochhammer symbol is also known as the Apell symbol.@comment exceptions:  GSL_EDOM, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_lnpoch (double @var{a}, double @var{x})@deftypefunx int gsl_sf_lnpoch_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result})@cindex logarithm of Pochhammer symbolThese routines compute the logarithm of the Pochhammer symbol,@math{\log((a)_x) = \log(\Gamma(a + x)/\Gamma(a))} for @math{a > 0},@math{a+x > 0}.@comment exceptions:  GSL_EDOM@end deftypefun@deftypefun int gsl_sf_lnpoch_sgn_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}, double * @var{sgn})These routines compute the sign of the Pochhammer symbol and thelogarithm of its magnitude.  The computed parameters are @math{result =\log(|(a)_x|)} and @math{sgn = sgn((a)_x)} where @math{(a)_x :=\Gamma(a + x)/\Gamma(a)}, subject to @math{a}, @math{a+x} not beingnegative integers.@comment exceptions:  GSL_EDOM@end deftypefun@deftypefun double gsl_sf_pochrel (double @var{a}, double @var{x})@deftypefunx int gsl_sf_pochrel_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result})@cindex relative Pochhammer symbolThese routines compute the relative Pochhammer symbol @math{((a,x) -1)/x} where @math{(a,x) = (a)_x := \Gamma(a + x)/\Gamma(a)}.@comment exceptions:  GSL_EDOM@end deftypefun@deftypefun double gsl_sf_gamma_inc_Q (double @var{a}, double @var{x})@deftypefunx int gsl_sf_gamma_inc_Q_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result})@cindex incomplete Gamma functionThese routines compute the normalized incomplete Gamma Function@c{$Q(a,x) = 1/\Gamma(a) \int_x^\infty dt\, t^{(a-1)} \exp(-t)$}@math{Q(a,x) = 1/\Gamma(a) \int_x\infty dt t^@{a-1@} \exp(-t)}for @math{a > 0}, @c{$x \ge 0$}@math{x >= 0}.@comment exceptions: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_gamma_inc_P (double @var{a}, double @var{x})@deftypefunx int gsl_sf_gamma_inc_P_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result})@cindex complementary incomplete Gamma functionThese routines compute the complementary normalized incomplete Gamma Function@c{$P(a,x) = 1/\Gamma(a) \int_0^x dt\, t^{(a-1)} \exp(-t)$}@math{P(a,x) = 1/\Gamma(a) \int_0^x dt t^@{a-1@} \exp(-t)}for @math{a > 0}, @c{$x \ge 0$}@math{x >= 0}. Note that Abramowitz & Stegun call @math{P(a,x)} the incomplete gammafunction (section 6.5).@comment exceptions: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_gamma_inc (double @var{a}, double @var{x})@deftypefunx int gsl_sf_gamma_inc_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result})@cindex non-normalized incomplete Gamma functionThese functions compute the incomplete Gamma Function@c{$\Gamma(a,x)$} @math{\Gamma(a,x)}, withoutthe normalization factor included in the previously defined functions:@c{$\Gamma(a,x) = \int_x^\infty dt\, t^{(a-1)} \exp(-t)$}@math{\Gamma(a,x) = \int_x\infty dt t^@{a-1@} \exp(-t)}for @math{a} real and @c{$x \ge 0$}@math{x >= 0}.@comment exceptions: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_beta (double @var{a}, double @var)@deftypefunx int gsl_sf_beta_e (double @var{a}, double @var, gsl_sf_result * @var{result})@cindex Beta functionThese routines compute the Beta Function, @math{B(a,b) =\Gamma(a)\Gamma(b)/\Gamma(a+b)} for @math{a > 0}, @math{b > 0}.@comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_lnbeta (double @var{a}, double @var)@deftypefunx int gsl_sf_lnbeta_e (double @var{a}, double @var, gsl_sf_result * @var{result})@cindex logarithm of Beta functionThese routines compute the logarithm of the Beta Function, @math{\log(B(a,b))}for @math{a > 0}, @math{b > 0}.@comment exceptions: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_beta_inc (double @var{a}, double @var, double @var{x})@deftypefunx int gsl_sf_beta_inc_e (double @var{a}, double @var, double @var{x}, gsl_sf_result * @var{result})@cindex incomplete Beta function, normalized@cindex normalized incomplete Beta function@cindex Beta function, incomplete normalized These routines compute the normalize incomplete Beta function@math{B_x(a,b)/B(a,b)} for @math{a > 0}, @math{b > 0}, and @c{$0 \le x \le 1$}@math{0 <= x <= 1}.@end deftypefun

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美精品九九99久久| 韩国三级在线一区| 欧美在线看片a免费观看| 亚洲欧美成aⅴ人在线观看 | 国产欧美视频一区二区| 国产九色sp调教91| 国产精品亲子乱子伦xxxx裸| 91在线观看高清| 午夜伊人狠狠久久| 欧美成人a∨高清免费观看| 国产精品亚洲成人| 中文字幕一区在线观看视频| 欧美在线高清视频| 日韩成人av影视| 久久精品人人做| 91女神在线视频| 蜜桃av一区二区在线观看 | 国产精品青草综合久久久久99| 成人精品视频一区| 亚洲图片一区二区| 日韩视频免费直播| 不卡一二三区首页| 免费久久精品视频| 亚洲色图欧美偷拍| 日韩欧美另类在线| 一本大道综合伊人精品热热| 另类的小说在线视频另类成人小视频在线 | 久久青草国产手机看片福利盒子| 岛国一区二区在线观看| 亚洲一区二区三区美女| 久久精品一区蜜桃臀影院| 91久久精品一区二区三区| 激情深爱一区二区| 亚洲一区二三区| 久久久精品中文字幕麻豆发布| 91麻豆国产福利在线观看| 蜜桃精品在线观看| 一区二区欧美精品| 久久久久高清精品| 在线播放中文一区| 99精品久久久久久| 久久av资源站| 五月天亚洲精品| 亚洲精品国产第一综合99久久| 精品免费国产一区二区三区四区| 91麻豆产精品久久久久久 | 日韩高清在线不卡| 亚洲人成电影网站色mp4| 精品国产乱码久久久久久老虎 | 播五月开心婷婷综合| 日本aⅴ亚洲精品中文乱码| 日韩毛片精品高清免费| 久久蜜臀中文字幕| 精品国产免费人成电影在线观看四季| 欧洲色大大久久| 91麻豆产精品久久久久久| 成人avav影音| 成人禁用看黄a在线| 国产成人亚洲综合a∨猫咪| 精品一二三四区| 美腿丝袜亚洲色图| 午夜视频一区在线观看| 亚洲一区日韩精品中文字幕| 亚洲猫色日本管| 亚洲伦理在线精品| 亚洲欧美乱综合| 亚洲男帅同性gay1069| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ原创 | 亚洲视频一区二区在线观看| 国产欧美视频在线观看| 国产欧美综合在线观看第十页| 精品国产91亚洲一区二区三区婷婷| 欧美日韩国产综合草草| 欧美日韩欧美一区二区| 欧美日韩一二三| 91精品在线一区二区| 在线播放日韩导航| 这里只有精品电影| 欧美mv日韩mv国产| 久久色.com| 日本一区二区动态图| 国产精品午夜久久| 亚洲日本成人在线观看| 亚洲精品网站在线观看| 一区二区三区成人| 亚洲成人中文在线| 蜜臀av一区二区在线免费观看 | 国产精品资源网站| 国产成人av资源| 成人18精品视频| 日本高清成人免费播放| 欧美精品乱码久久久久久按摩| 欧美日韩精品一区二区在线播放| 67194成人在线观看| 精品国产乱码久久久久久闺蜜| 久久午夜色播影院免费高清| 国产精品久久福利| 亚洲综合免费观看高清完整版| 午夜精品视频在线观看| 久久精品国产网站| 成人高清在线视频| 在线观看区一区二| 日韩欧美一二三四区| 国产校园另类小说区| 伊人色综合久久天天人手人婷| 日韩激情视频在线观看| 国产精品羞羞答答xxdd| av亚洲精华国产精华| 欧美夫妻性生活| 久久精品综合网| 亚洲资源在线观看| 国产一区二区三区黄视频 | 国产精品国产三级国产专播品爱网 | 亚洲一区二区影院| 精品无人码麻豆乱码1区2区| 92精品国产成人观看免费| 欧美二区在线观看| 国产欧美一区二区在线观看| 亚洲制服丝袜在线| 国产成人精品影视| 精品视频在线免费| 国产精品国产自产拍高清av| 蜜臀av在线播放一区二区三区| 成人动漫av在线| 日韩欧美电影一区| 亚洲欧美另类图片小说| 国产麻豆一精品一av一免费| 欧美羞羞免费网站| 欧美激情在线观看视频免费| 日韩不卡一区二区三区| 91色porny在线视频| 26uuu亚洲婷婷狠狠天堂| 亚洲福利视频一区二区| 成人免费三级在线| 欧美电视剧在线看免费| 亚洲国产成人porn| 91小视频免费观看| 国产区在线观看成人精品| 蜜臀va亚洲va欧美va天堂 | 日韩一区二区免费在线观看| 亚洲欧美日韩国产另类专区| 国产精品一二二区| 精品粉嫩aⅴ一区二区三区四区| 亚洲一区二区影院| 色呦呦日韩精品| 成人欧美一区二区三区黑人麻豆 | 欧美人狂配大交3d怪物一区| 亚洲天堂福利av| 成人国产一区二区三区精品| 日韩久久精品一区| 日韩国产一二三区| 在线播放视频一区| 亚洲va欧美va人人爽午夜| 色综合色综合色综合色综合色综合| 久久尤物电影视频在线观看| 青青草91视频| 欧美一二三区在线| 午夜成人免费视频| 欧美在线观看视频一区二区三区 | 中文成人av在线| 国内精品伊人久久久久av一坑| 日韩欧美国产一区二区三区| 日本不卡视频一二三区| 欧美军同video69gay| 婷婷丁香久久五月婷婷| 欧美精品v日韩精品v韩国精品v| 亚洲超碰97人人做人人爱| 欧美日韩一级黄| 亚洲国产日韩av| 欧美精品乱码久久久久久按摩| 天天亚洲美女在线视频| 91精品麻豆日日躁夜夜躁| 麻豆91精品91久久久的内涵| 精品理论电影在线观看| 韩国成人精品a∨在线观看| 26uuu欧美| 不卡在线视频中文字幕| 亚洲理论在线观看| 69p69国产精品| 狠狠色综合播放一区二区| 久久久综合精品| 成人黄色一级视频| 一区二区三区高清| 91精品国产综合久久久久久久| 久久激情五月激情| 国产精品色婷婷| 色天天综合久久久久综合片| 亚洲v日本v欧美v久久精品| 日韩午夜精品电影| 大桥未久av一区二区三区中文| 最新欧美精品一区二区三区| 欧美亚日韩国产aⅴ精品中极品| 日本不卡视频一二三区| 国产欧美日韩三区| 欧美中文字幕一二三区视频| 日韩有码一区二区三区| 久久久午夜精品| 91久久免费观看| 国产一区在线不卡| 亚洲日本成人在线观看|