?? stm32l1xx_spi.c
字號:
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DIRECTION(SPI_Direction));
if (SPI_Direction == SPI_Direction_Tx)
{
/* Set the Tx only mode */
SPIx->CR1 |= SPI_Direction_Tx;
}
else
{
/* Set the Rx only mode */
SPIx->CR1 &= SPI_Direction_Rx;
}
}
/**
* @brief Configures internally by software the NSS pin for the selected SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param SPI_NSSInternalSoft: specifies the SPI NSS internal state.
* This parameter can be one of the following values:
* @arg SPI_NSSInternalSoft_Set: Set NSS pin internally
* @arg SPI_NSSInternalSoft_Reset: Reset NSS pin internally
* @retval None
*/
void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* SPIx, uint16_t SPI_NSSInternalSoft)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_NSS_INTERNAL(SPI_NSSInternalSoft));
if (SPI_NSSInternalSoft != SPI_NSSInternalSoft_Reset)
{
/* Set NSS pin internally by software */
SPIx->CR1 |= SPI_NSSInternalSoft_Set;
}
else
{
/* Reset NSS pin internally by software */
SPIx->CR1 &= SPI_NSSInternalSoft_Reset;
}
}
/**
* @brief Enables or disables the SS output for the selected SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param NewState: new state of the SPIx SS output.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_SSOutputCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI SS output */
SPIx->CR2 |= (uint16_t)SPI_CR2_SSOE;
}
else
{
/* Disable the selected SPI SS output */
SPIx->CR2 &= (uint16_t)~((uint16_t)SPI_CR2_SSOE);
}
}
/**
* @}
*/
/** @defgroup SPI_Group2 Data transfers functions
* @brief Data transfers functions
*
@verbatim
===============================================================================
Data transfers functions
===============================================================================
This section provides a set of functions allowing to manage the SPI data transfers
In reception, data are received and then stored into an internal Rx buffer while
In transmission, data are first stored into an internal Tx buffer before being
transmitted.
The read access of the SPI_DR register can be done using the SPI_I2S_ReceiveData()
function and returns the Rx buffered value. Whereas a write access to the SPI_DR
can be done using SPI_I2S_SendData() function and stores the written data into
Tx buffer.
@endverbatim
* @{
*/
/**
* @brief Returns the most recent received data by the SPIx peripheral.
* @param SPIx: where x can be 1 or 2 in SPI mode.
* @retval The value of the received data.
*/
uint16_t SPI_I2S_ReceiveData(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Return the data in the DR register */
return SPIx->DR;
}
/**
* @brief Transmits a Data through the SPIx peripheral.
* @param SPIx: where x can be 1 or 2 in SPI mode.
* @param Data: Data to be transmitted.
* @retval None
*/
void SPI_I2S_SendData(SPI_TypeDef* SPIx, uint16_t Data)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Write in the DR register the data to be sent */
SPIx->DR = Data;
}
/**
* @}
*/
/** @defgroup SPI_Group3 Hardware CRC Calculation functions
* @brief Hardware CRC Calculation functions
*
@verbatim
===============================================================================
Hardware CRC Calculation functions
===============================================================================
This section provides a set of functions allowing to manage the SPI CRC hardware
calculation
SPI communication using CRC is possible through the following procedure:
1. Program the Data direction, Polarity, Phase, First Data, Baud Rate Prescaler,
Slave Management, Peripheral Mode and CRC Polynomial values using the SPI_Init()
function.
2. Enable the CRC calculation using the SPI_CalculateCRC() function.
3. Enable the SPI using the SPI_Cmd() function
4. Before writing the last data to the TX buffer, set the CRCNext bit using the
SPI_TransmitCRC() function to indicate that after transmission of the last
data, the CRC should be transmitted.
5. After transmitting the last data, the SPI transmits the CRC. The SPI_CR1_CRCNEXT
bit is reset. The CRC is also received and compared against the SPI_RXCRCR
value.
If the value does not match, the SPI_FLAG_CRCERR flag is set and an interrupt
can be generated when the SPI_I2S_IT_ERR interrupt is enabled.
Note:
-----
- It is advised to don't read the calculate CRC values during the communication.
- When the SPI is in slave mode, be careful to enable CRC calculation only
when the clock is stable, that is, when the clock is in the steady state.
If not, a wrong CRC calculation may be done. In fact, the CRC is sensitive
to the SCK slave input clock as soon as CRCEN is set, and this, whatever
the value of the SPE bit.
- With high bitrate frequencies, be careful when transmitting the CRC.
As the number of used CPU cycles has to be as low as possible in the CRC
transfer phase, it is forbidden to call software functions in the CRC
transmission sequence to avoid errors in the last data and CRC reception.
In fact, CRCNEXT bit has to be written before the end of the transmission/reception
of the last data.
- For high bit rate frequencies, it is advised to use the DMA mode to avoid the
degradation of the SPI speed performance due to CPU accesses impacting the
SPI bandwidth.
- When the STM32L15xxx are configured as slaves and the NSS hardware mode is
used, the NSS pin needs to be kept low between the data phase and the CRC
phase.
- When the SPI is configured in slave mode with the CRC feature enabled, CRC
calculation takes place even if a high level is applied on the NSS pin.
This may happen for example in case of a multislave environment where the
communication master addresses slaves alternately.
- Between a slave deselection (high level on NSS) and a new slave selection
(low level on NSS), the CRC value should be cleared on both master and slave
sides in order to resynchronize the master and slave for their respective
CRC calculation.
To clear the CRC, follow the procedure below:
1. Disable SPI using the SPI_Cmd() function
2. Disable the CRC calculation using the SPI_CalculateCRC() function.
3. Enable the CRC calculation using the SPI_CalculateCRC() function.
4. Enable SPI using the SPI_Cmd() function.
@endverbatim
* @{
*/
/**
* @brief Enables or disables the CRC value calculation of the transferred bytes.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param NewState: new state of the SPIx CRC value calculation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_CalculateCRC(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI CRC calculation */
SPIx->CR1 |= SPI_CR1_CRCEN;
}
else
{
/* Disable the selected SPI CRC calculation */
SPIx->CR1 &= (uint16_t)~((uint16_t)SPI_CR1_CRCEN);
}
}
/**
* @brief Transmit the SPIx CRC value.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @retval None
*/
void SPI_TransmitCRC(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Enable the selected SPI CRC transmission */
SPIx->CR1 |= SPI_CR1_CRCNEXT;
}
/**
* @brief Returns the transmit or the receive CRC register value for the specified SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @param SPI_CRC: specifies the CRC register to be read.
* This parameter can be one of the following values:
* @arg SPI_CRC_Tx: Selects Tx CRC register
* @arg SPI_CRC_Rx: Selects Rx CRC register
* @retval The selected CRC register value..
*/
uint16_t SPI_GetCRC(SPI_TypeDef* SPIx, uint8_t SPI_CRC)
{
uint16_t crcreg = 0;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_CRC(SPI_CRC));
if (SPI_CRC != SPI_CRC_Rx)
{
/* Get the Tx CRC register */
crcreg = SPIx->TXCRCR;
}
else
{
/* Get the Rx CRC register */
crcreg = SPIx->RXCRCR;
}
/* Return the selected CRC register */
return crcreg;
}
/**
* @brief Returns the CRC Polynomial register value for the specified SPI.
* @param SPIx: where x can be 1 or 2 to select the SPI peripheral.
* @retval The CRC Polynomial register value.
*/
uint16_t SPI_GetCRCPolynomial(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Return the CRC polynomial register */
return SPIx->CRCPR;
}
/**
* @}
*/
/** @defgroup SPI_Group4 DMA transfers management functions
* @brief DMA transfers management functions
*
@verbatim
===============================================================================
DMA transfers management functions
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the SPIx DMA interface.
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -